898 resultados para gold-organometallics
Resumo:
The study and preservation of museum collections requires complete knowledge and understanding of constituent materials that can be natural, synthetic, or semi-synthetic polymers. In former times, objects were incorporated in museum collections and classified solely by their appearance. New studies, prompted by severe degradation processes or conservation-restoration actions, help shed light on the materiality of objects that can contradict the original information or assumptions. The selected case study presented here is of a box dating from the beginning of the 20th century that belongs to the Portuguese National Ancient Art Museum. Museum curators classified it as a tortoiseshell box decorated with gold applications solely on the basis of visual inspection and the information provided by the donor. This box has visible signs of degradation with white veils, initially assumed to be the result of biological degradation of a proteinaceous matrix. This paper presents the methodological rationale behind this study and proposes a totally non-invasive methodology for the identification of polymeric materials in museum artifacts. The analysis of surface leachates using 1H and 13C nuclear magnetic resonance (NMR) complemented by in situ attenuated total reflection infrared spectroscopy (ATR FT-IR) allowed for full characterization of the object s substratum. The NMR technique unequivocally identified a great number of additives and ATR FT-IR provided information about the polymer structure and while also confirming the presence of additives. The pressure applied during ATR FT-IR spectroscopy did not cause any physical change in the structure of the material at the level of the surface (e.g., color, texture, brightness, etc.). In this study, variable pressure scanning electron microscopy (VP-SEM-EDS) was also used to obtain the elemental composition of the metallic decorations. Additionally, microbiologic and enzymatic assays were performed in order to identify the possible biofilm composition and understand the role of microorganisms in the biodeterioration process. Using these methodologies, the box was correctly identified as being made of cellulose acetate plastic with brass decorations and the white film was identified as being composed mainly of polymer exudates, namely sulphonamides and triphenyl phosphate.
Resumo:
The visible polychromy of a wooden sculpture representing St. John the Evangelist, from Museu Nacional de Arte Antiga, Lisbon (Portugal) presents several techniques that complement each other on the creation of a sumptuous estofado. This case-study allowed the survey on gilding, silvering and polychromy practices, and observations on their execution are briefly reported and documented with results from a multi-analytical approach. Examination included digital photomicrography and the observation of micro-samples cross-sections, while material identification resorted to several analytical methods that included scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDS) and X-ray diffraction (XRD).
Resumo:
The gold(I)-catalyzed chemoselective dearomatization of β-naphthols is reported through a straightforward approach via [3,3]-sigmatropic rearrangement /allene-cyclyzation cascade processes. Easily accessed naphthyl-propargyl ethers and derivatives in this work are employed as starting materials. Delightfully, an array of deoramatized dyhydrofuryl -naphthalen-2(1H)-ones featured densely functional groups are obtained in high yields (up to 98%) in 10 min reaction time under extremely mild reaction conditions like reagent grade solvent and exposure to air. The potential of accessing to high enantioselectivety on the dearomatized dyhydrofuryl- naphthalen-2(1H)-ones is also approved by the good ee (65%) relying on (R)-xylyl- BINAP(AuCl)2. In addition, complete theoretical elucidation of the reaction pathway is also proposed which addresses a rationale for essential motivation such as regio- and chemoselectivity. Moreover, an efficient gold catalyzed intermolecular dearomatization of substituted β-naphthols with allenamides is presented here. PPh3AuTFA (5 mol %) approves the efficient dearomatively allylation protocol under mild conditions and exhibits high tolerance on substrates scope (24 examples) in good to excellent yield accompanied with high regioselectivity and stereoselectivity. Moreover, the synergistic catalytic system also highlight the synergistic function between the [PPh3Au]+ (π-acid) and TFA− (Lewis base). At last, a new chiral BINOL phosphoric acid silver salt is successfully synthesized and used as the chiral counter anion, which strongly promotes the enantioselectivity (up to 92%). At last but not least, crucially, SmI2 induced enantioselective formal synthesis of strychnine, a complex alkaloid and a classical target used to benchmark new synthetic methods is developed. Enantioselective dearomatising radical cyclisation on to the indole unit and further ET will then give organosamarium that is quenched diastereoselectively by the ester to deliver Strychnine in 7 steps.
Resumo:
Glucaric acid (GA) is one of the building block chemicals derived from sugar biomass with higher added value. Nowadays, GA is produced by oxidation of glucose (Glu) with either stoichiometric oxidants (HNO3), or by means of electrochemical or biochemical synthesis. However, these processes show drawbacks from either the environmental or economic viewpoint. For this reason, gold nanoparticles (Au NPs) supported on activated carbon (AC) have been studied as catalysts for the oxidation of Glu, using O2 as oxidant in the presence of a base. Using sol immobilization technique, Au NPs have been supported on AC following different experimental procedures. UV-Vis spectroscopy, XRD, TEM and TG analysis were utilized in the characterization of the catalysts. The operational conditions were optimized obtaining 24% of yield of GA, 37% to GO and 27% to byproducts in 1 h, 1000 rpm, 10 bar of O2 and Glu:Au:NaOH molar ratio of 1000:1:3000. Under such conditions, catalysts show relatively high Glu conversion (≥82%) with different GA yields. GO+GA yield is around 58-61%. Therefore, the oxidation reaction was performed at 15 min where Au/AC PVA0 reached the highest yield of GA (16%) and Au/AC PVA2.4 gave the lowest (8%). It is evident that the presence of PVA influences to a higher degree the reaction rate than the Au NPs size. Hence, the effect of different heat treatments where applied for the removal of PVA: washing with water at 60℃ or heat treatment (120-250℃) with Air/H2. Washing treatment and heat treatment at 120℃ with Air/H2 may have resulted in the mildest treatments for the removal of PVA. Finally, two different supports have been used in order to study the effect of metal-support interaction in the immobilization of Au NPs: ZrO2 and AC. Au/AC catalyst demonstrated a higher conversion of GO to GA at short reaction times (15.1% yield GA) compared to Au/ZrO2 (2.4% yield GA).
Resumo:
The glucaric acid (GLA) has been identified as a “top value-added chemical from biomass” that can be employed for many uses; for instance, it could be a precursor of adipic acid, a monomer of Nylon-6,6. GLA can be synthetized by the oxidation of glucose (GLU), passing through the intermediate gluconic acid (GLO). In recent years, a new process has been sought to obtain GLA in an economic and environmental sustainable way, in order to replace the current use of HNO3 as a stoichiometric oxidant, or electrocatalysis and biochemical synthesis, which show several disadvantages. Thereby, this work is focused on the study of catalysts based on gold nanoparticles supported on activated carbon for the oxidation reaction of GLU to GLA using O2 as an oxidant agent and NaOH as base. The sol-immobilization method leads us to obtain small and well dispersed nanoparticles, characterized by UV-Vis, XRD and TEM techniques. Repeating the reaction on different batches of catalyst, both the synthesis and the reaction were confirmed to be reproducible. The effect of the reaction time feeding GLO as reagent was studied: the results show that the conversion of GLO increases as the reaction time increases; however, the yields of GLA and others increase up to 1 hour, and then they remain constant. In order to obtain information on the catalytic mechanism at the atomistic level, a computational study based on density functional theory and atomistic modeling of the gold nano-catalyst were performed. Highly symmetric (icosahedral and cubo-octahedral) and distorted Au55 nanoparticles have been optimized along with Au(111) and Au(100) surfaces. Distorted structures were found to be more stable than symmetrical ones due to relativistic effects. On these various models the adsorptions of various species involved in the catalysis have been studied, including OH- species, GLU and GLO. The study carried out aims to provide a method for approaching to the study of nanoparticellary catalytic systems.
Resumo:
Cerium oxide in catalysis can be used both as support and as a catalyst itself. Ceria catalyses many oxidations reactions, its excellent catalytic properties are due to its store oxygen storage capacity (OSC) and the reticular defects present on its surface. Different morphologies expose different reticular planes, and different reticular planes can expose different amounts of defects. The preparation method of cerium oxide can influence the surface area, morphology, and the number of defects in the sample. This work is focused on different preparation methods for gold nanoparticles supported on 1D nanostructures of cerium oxide prepared via electrospinning, their XRD, DRUV-Vis and Raman characterizations, and their catalytic performance on the oxidation reaction of HMF to FDCA.
Resumo:
This PhD thesis summarize the work carried out during three years of PhD course. Several thematic concerning gold(I) chemistry are analysed by crossing data from different chemistry areas as: organic chemistry, organometallic chemistry, inorganic chemistry and computational chemistry. In particular, the thesis focuses its attention on the evaluation of secondary electronic interactions, subsisting between ligand and Au(I) metal centre in the catalyst, and their effects on catalytic activity. The interaction that has been taken in consideration is the Au…Ar π-interaction which is known to prevent the decomposition of catalyst, but exhaustive investigations of further effects has never been done so far. New libraries of carbene (ImPy) and biarylphosphine ligands have been designed and synthetized for the purpose and subsequently utilized for the synthesis of corresponding Au(I) complexes. Resulting catalysts are tested in various catalytic processes involving different intermediates and in combination with solid state information from SC-XRD revealed an unprecedented activation mode which is only explained by considering both electronic nature and strength of Au…Ar π-interaction. DFT calculation carried on catalysis intermediates are in agreement with experimental ones, giving robustness to the theory. Moreover, a new synthetic protocol for the lactonization of N-allenyl indole-2-carboxylic acids is presented. Reaction conditions are optimized with the newly synthetized ImPy-Au(I) catalysts and different substrates are also tested providing a quite broad reaction scope. Chiral ImPy ligands have also been developed for the asymmetric variant of the same reaction and encouraging enantiomeric excess are obtained.
The Green Gold Experience. Chef internazionali alla scoperta dell’Olio EVO nel cuore verde d’Italia.
Resumo:
Il progetto The Green Gold Experience ha lo scopo di promuovere e valorizzare l'olio extra vergine di oliva di eccellenza della regione Umbria ad una clientela elitaria come quella degli chef stellati. L'esperienza, dalla durata di più giorni, viene promossa da A.I.R.O., Associazione Internazionale Ristoranti dell'Olio, e si svolge interamente in Umbria tra strutture ricettive di eccellenza ed aziende olivicole selezionate. L'associazione contatta direttamente gli chef stellati esteri per invitarli a prendere parte a questo servizio dove verranno loro presentati e spiegati, tramite attività e corsi specifici di degustazione e abbinamento, gli oli che caratterizzano maggiormente la regione. Le aziende olivicole umbre grazie a questa esperienza riescono ad entrare in contatto con dei possibili clienti che, utilizzando l'olio EVO nei loro ristoranti, riescono a valorizzare il prodotto esaltando la sua importanza.
Resumo:
Energy dispersive X-ray spectroscopy microanalysis (EDX), scanning electron microscopy (SEM), and Archimedes' Principle were used to determine the characteristics of inorganic filler particles in five dental alginates, including Cavex ColorChange (C), Hydrogum 5 (H5), Hydrogum (H), Orthoprint (O), and Jeltrate Plus (JP). The different alginate powders (0.5 mg) were fixed on plastic stubs (n = 5) and sputter coated with carbon for EDX analysis, then coated with gold, and observed using SEM. Volume fractions were determined by weighing a sample of each material in water before and after calcining at 450(°)C for 3 h. The alginate materials were mainly composed of silicon (Si) by weight (C-81.59%, H-79.89%, O-78.87%, H5-77.95%, JP-66.88%, wt). The filler fractions in volume (vt) were as follows: H5-84.85%, JP-74.76%, H-70.03%, O-68.31%, and C-56.10%. The tested materials demonstrated important differences in the inorganic elemental composition, filler fraction, and particle morphology.
Resumo:
The ethanol oxidation reaction (EOR) is investigated on Pt/Au(hkl) electrodes. The Au(hkl) single crystals used belong to the [n(111)x(110)] family of planes. Pt is deposited following the galvanic exchange of a previously deposited Cu monolayer using a Pt(2+) solution. Deposition is not epitaxial and the defects on the underlying Au(hkl) substrates are partially transferred to the Pt films. Moreover, an additional (100)-step-like defect is formed, probably as a result of the strain resulting from the Pt and Au lattice mismatch. Regarding the EOR, both vicinal Pt/Au(hkl) surfaces exhibit a behavior that differs from that expected for stepped Pt; for instance, the smaller the step density on the underlying Au substrate, the greater the ability to break the CC bond in the ethanol molecule, as determined by in situ Fourier transform infrared spectroscopy measurements. Also, we found that the acetic acid production is favored as the terrace width decreases, thus reflecting the inefficiency of the surface array to cleave the ethanol molecule.
Resumo:
Fibroblast cells grown in electrospun polymer scaffolds were stained with platinum blue, a heavy metal stain, and imaged using scanning electron microscopy. Good contrast on the cells was achieved compared with samples that were gold sputter coated. The cell morphology could be clearly observed, and the cells could be distinguished from the scaffold fibers. Here we optimized the required concentration of platinum blue for imaging cells grown in scaffolds and show that a higher concentration causes platinum aggregation. Overall, platinum blue is a useful stain for imaging cells because of its enhanced contrast using scanning electron microscopy (SEM). In the future it would be useful to investigate cell growth and morphology using three-dimensional imaging methods.
Resumo:
To analyze the main factors that influence bone mass in children and teenagers assessed by quantitative ultrasound (QUS) of the phalanges. A systematic literature review was performed according to the PRISMA method with searches in databases Pubmed/Medline, SciELO and Bireme for the period 2001-2012, in English and Portuguese languages, using the keywords: children, teenagers, adolescent, ultrasound finger phalanges, quantitative ultrasound of phalanges, phalangeal quantitative ultrasound. 21 articles were included. Girls had, in QUS, Amplitude Dependent Speed of Sound (AD-SoS) values higher than boys during pubertal development. The values of the parameters of QUS of the phalanges and dual-energy X-ray Absorptiometry (DXA) increased with the increase of the maturational stage. Anthropometric variables such as age, weight, height, body mass index (BMI), lean mass showed positive correlations with the values of QUS of the phalanges. Physical activity has also been shown to be positively associated with increased bone mass. Factors such as ethnicity, genetics, caloric intake and socioeconomic profile have not yet shown a conclusive relationship and need a larger number of studies. QUS of the phalanges is a method used to evaluate the progressive acquisition of bone mass during growth and maturation of individuals in school phase, by monitoring changes that occur with increasing age and pubertal stage. There were mainly positive influences in variables of sex, maturity, height, weight and BMI, with similar data when compared to the gold standard method, the DXA.