968 resultados para glutamate dehydrogenase
Resumo:
The plasma membrane Ca2+ pump is a key regulator of cytosolic free Ca2+. Recent studies have demonstrated the dynamic expression of the plasma membrane Ca2+ pump in a variety of cell types. Furthermore, alterations in plasma membrane calcium pump activity have now been implicated in human disease. In this study, the development of a technique to quantitatively assess mRNA expression of the human plasma membrane Ca2+ ATPase (PMCA1) isoform of the plasma membrane Ca2+ pump, using a real-time reverse transcriptase-polymerase chain reaction (real-time RT-PCR) assay in a human breast epithelial cell line (MCF-7) is described. The sequences of the PMCA1 primers and probe for real-time RT-PCR are presented. The results also indicate that PMCA1 mRNA can be normalized to both 18S ribosomal RNA (18S rRNA) and human glyceraldehyde-3-phosphate dehydrogenase (hGAPDH) in MCF-7 cells. Real-time RT-PCR will be most useful in assessing PMCA1 mRNA expression in cases where only low amounts of RNA are available and/or when numerous samples must be assessed simultaneously. (C) 2001 Elsevier Science Inc. All rights reserved.
Resumo:
The adaptations of muscle to sprint training can be separated into metabolic and morphological changes. Enzyme adaptations represent a major metabolic adaptation to sprint training, with the enzymes of all three energy systems showing signs of adaptation to training and some evidence of a return to baseline levels with detraining. Myokinase and creatine phosphokinase have shown small increases as a result of short-sprint training in some studies and elite sprinters appear better able to rapidly breakdown phosphocreatine (PCr) than the sub-elite. No changes in these enzyme levels have been reported as a result of detraining. Similarly, glycolytic enzyme activity (notably lactate dehydrogenase, phosphofructokinase and glycogen phosphorylase) has been shown to increase after training consisting of either long (> 10-second) or short (< 10-second) sprints. Evidence suggests that these enzymes return to pre-training levels after somewhere between 7 weeks and 6 months of detraining. Mitochondrial enzyme activity also increases after sprint training, particularly when long sprints or short recovery between short sprints are used as the training stimulus. Morphological adaptations to sprint training include changes in muscle fibre type, sarcoplasmic reticulum, and fibre cross-sectional area. An appropriate sprint training programme could be expected to induce a shift toward type Ha muscle, increase muscle cross-sectional area and increase the sarcoplasmic reticulum volume to aid release of Ca2+. Training volume and/or frequency of sprint training in excess of what is optimal for an individual, however, will induce a shift toward slower muscle contractile characteristics. In contrast, detraining appears to shift the contractile characteristics towards type IIb, although muscle atrophy is also likely to occur. Muscle conduction velocity appears to be a potential non-invasive method of monitoring contractile changes in response to sprint training and detraining. In summary, adaptation to sprint training is clearly dependent on the duration of sprinting, recovery between repetitions, total volume and frequency of training bouts. These variables have profound effects on the metabolic, structural and performance adaptations from a sprint-training programme and these changes take a considerable period of time to return to baseline after a period of detraining. However, the complexity of the interaction between the aforementioned variables and training adaptation combined with individual differences is clearly disruptive to the transfer of knowledge and advice from laboratory to coach to athlete.
Resumo:
There have been few replicated examples of genotype x environment interaction effects on behavioral variation or risk of psychiatric disorder. We review some of the factors that have made detection of genotype x environment interaction effects difficult, and show how genotype x shared environment interaction (GxSE) effects are commonly confounded with genetic parameters in data from twin pairs reared together. Historic data on twin pairs reared apart can in principle be used to estimate such GxSE effects, but have rarely been used for this purpose. We illustrate this using previously published data from the Swedish Adoption Twin Study of Aging (SATSA), which suggest that GxSE effects could account for as much as 25% of the total variance in risk of becoming a regular smoker. Since few separated twin pairs will be available for study in the future, we also consider methods for modifying variance components linkage analysis to allow for environmental interactions with linked loci.
Resumo:
The selective loss of neurones in a range of neurodegenerative diseases is widely thought to involve the process of excitotoxicity, in which glutamate-mediated neuronal killing is elaborated through the excessive stimulation of cell-surface receptors. Every such disease exhibits a distinct regional and subregional pattern of neuronal loss. so processes must be locally triggered to different extents to account for this. We have studied several mechanisms which could lead to excitotoxic glutamate pathophysiology and compared them in different diseases. Our data suggest that glutamate can reach toxic extracellular levels in Alzheimer disease by malfunctions in cellular transporters, and that the toxicity may be exacerbated by continued glutamate release from presynaptic neurones acting on hypersensitive postsynaptic receptors. Thus the excitotoxicity is direct. In contrast, alcoholic brain damage arises in regions where GABA-mediated inhibition is deficient, and fails properly to dampen trans-synaptic excitation, Thus the excitotoxicity is indirect. A variety of such mechanisms is possible, which may combine in different ways.
Resumo:
Many of the asexual stage Plasmodium falciparum proteins that are the targets of host protective responses are markedly polymorphic. The full repertoire of diversity is not defined for any antigen. Most studies have focused on the genes encoding merozoite surface proteins 1 and 2 (MSP1, MSP2). We explored the extent of diversity of some of the less studied merozoite surface antigens and analyzed the degree of complexity of malaria field isolates by deriving nucleotide sequences of several antigens. We have determined the genotype of apical membrane antigen 1 (AMA1) in a group of 30 field samples, collected over 29 months, from individuals living in an area of intense malaria transmission in Irian Jaya, identifying 14 different alleles. AMA1 genotyping was combined with previously determined MSP2 typing. AMA1 had the greatest power in distinguishing between isolates but methodological problems, especially when mixed infections are present, suggest it is not an ideal typing target. MSP1, MSP3, and glutamate-rich protein genotypes were also determined from a smaller group of samples, and all results were combined to derive an extended antigenic haplotype. Within this subset of 10 patients, nine different genotypes could be discerned; however, five patients were all infected with the same strain. This strain was present in individuals from two separate villages and was still present 12 months later. This strain was predominant at the first time point but had disappeared at the fourth time point. This significant change in malaria genotypes could be due to strain-specific immunity developing in this population.
Resumo:
GABA(A) receptor sites were characterised in cerebral cortex tissue samples from deceased neurologically normal infants who had come to autopsy during the third trimester of pregnancy. Pharmacological parameters were obtained from homogenate binding studies which utilised the 'central-type' benzodiazepine ligands [H-3]diazepam and [H-3]flunitrazepam, and from the GABA activation of [H-3]diazepam binding. It was found that the two radioligands behaved differently during development. The affinity of [H-3]flunitrazepam for its binding site did not vary significantly between preparations, whereas the [H-3]diazepam K-D showed marked regional and developmental variations: infant tissues showed a distinctly lower affinity than adults for this ligand. The density of [H-3]flunitrazepam binding sites increased similar to35% during the third trimester to reach adult levels by term, whereas [H-3]diazepam binding capacity declined slightly but steadily throughout development. The GABA activation of [H-3]diazepam binding was less efficient early in the trimester, in that the affinity of the agonist was significantly lower, though it rose to adult levels by term. The strength of the enhancement response increased to adult levels over the same time-frame. The results strongly suggest that the subunit composition of cortical GABA(A) sites changes significantly during this important developmental stage. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Recent reports have suggested that proper maturation of synapses in the hippocampus requires activation of NMDA receptors. We previously demonstrated that neonatal ethanol exposure results in a lasting reduction in synaptic strength in the hippocampus. To determine if this reduction was due to ethanol's effects on NMDA receptors, we investigated long-term changes in synaptic properties resulting from administration of NMDA receptor antagonists to neonatal animals. Rats were injected daily from PND 4-9 with either the noncompetitive NMDA receptor antagonist MK-801, the competitive NMDA receptor antagonist CPP, or the AMPA receptor antagonist NBQX. Control rats were either injected daily with physiological saline during the same period or left to develop normally. Hippocampal slices were prepared from nembutal-anesthetized animals between PND 35 and PND 40. The maximum pEPSP and PS values were not significantly different between controls and NMDA antagonist-treated animals. However, slices from animals injected with NMDA receptor antagonists required higher stimulus currents to attain comparable pEPSPs. The ratio of the slope of the pEPSP to the amplitude of the presynaptic volley was also reduced, as were pEPSP responses to specific stimulus currents. None of these effects were observed in slices prepared from animals treated with the AMPA receptor antagonist NBQX. Glutamate receptor antagonism did not produce lasting changes in long-term potentiation or paired-pulse facilitation. These results indicate activation of NMDA receptors during development is necessary for proper development of synapses. (C) 2001 Wiley-Liss, Inc.
Resumo:
Fetal alcohol syndrome (FAS) is the leading cause of mental retardation in western society. We investigated possible changes in glutamate receptor levels in neonatal animals following ethanol exposure using radioligand binding and western blot analysis. We used a vapor chamber to administer ethanol to neonatal Wistar rats 3 h a day from postnatal day (PND) 4-9. A separation control group was separated from their mothers for the same time and duration as the vapor treatment, while a normal control group was left to develop normally. Daily ethanol administrations resulted in decreased brain weight and body weight, as well as microencephaly (decreased brain:body weight ratio). Neither the affinity nor maximum binding of [H-3]MK-801 (dizoclipine maleate) in the cortex of PND10 rats differed between treatment groups. Western blot analysis also failed to reveal any changes in NMDAR1, NMDAR2A, or NMDAR2B receptor levels. In contrast, the AMPA receptor subunit GluR1 was greatly reduced in vapor-treated pups compared with control pups, as revealed by western blot analysis. A similar reduction was found in westerns with an antibody recognizing the GluR2 and 4 subunits. These results indicate that ethanol reduces AMPA rather than NMDA receptors in the developing neocortex, possibly by blocking NMDA receptors during development. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Cushing's syndrome is associated with hypertension in approximately 80% of cases. Hypertension contributes to the marked increased mortality risk of past or current Cushing's syndrome, largely because of increased cardiovascular risk. Observation of the pathophysiological effect of chronically elevated ACTH and cortisol values in patients with ectopic ACTH secretion complements the available data from acute studies of the effects of ACTH and glucocorticoid infusions in normal volunteers. In a retrospective case review, we identified 58 patients with Cushing's syndrome caused by ectopic ACTH secretion, who were treated at the National Institutes of Health between 1983-1997. The diagnosis of an ectopic ACTH cause was confirmed by inferior petrosal sinus sampling and/or pathologic examination of tumor. The commonest causes were bronchial carcinoid (40%) and thymic carcinoid (10%), but 18 of 58 (31%) patients had an unknown source of ectopic ACTH. Hypertension (systolic blood pressure >140 mmHg and/or diastolic blood pressure >90 mmHg in adults) was noted in 45 of 58 (78%) ectopic Cushing's patients, a prevalence similar to that noted in other endogenous Cushing's syndrome etiologies. Hypertension was severe, deemed to require 3 or more drugs by the treating physicians, in 26 of 58 (45%) patients. Hypokalemia was much more prevalent than in patients with other causes of Cushing's syndrome, affecting 33 of 58 (57%) patients. The range of plasma ACTH (17-1557 pg/mL, normal
Resumo:
PRL and placental lactogen (PL) play key roles in maintaining the rodent corpus luteum through pregnancy. Suppressors of cytokine signaling (SOCS) have been shown to decrease cell sensitivity to cytokines, including PRL, and so here we have addressed the issue of whether luteolysis induced by prostaglandin F-2alpha (PGF(2alpha)) might up-regulate SOCS proteins to inhibit PRL signaling. In d 19 pregnant rats, cloprostenol, a PGF(2alpha) analog, rapidly induced transcripts for SOCS-3 and, to a lesser extent, SOCS-1. We also found increased SOCS-3 protein in the ovary by immunoblot and in the corpus luteum by immunohistochemistry. Increased SOCS-3 expression was preceded by an increase in STAT3 tyrosine phosphorylation 10 min after cloprostenol injection and was maintained for 4 h, as determined by gel shift and immunohistochemistry. Induction of SOCS-3 was accompanied by a sharp decrease in active STAT5, as determined by gel-shift assay and by loss of nuclear localized STAT5. Four hours after cloprostenol administration, the corpus luteum was refractory to stimulation of STAT5 by PRL administration, and this was not due to down-regulation of PRL receptor. Therefore, induction of SOCS-3 by PGF(2alpha) may be an important element in the initiation of luteolysis via rapid suppression of luteotropic support from PL.
Resumo:
Highly conserved motifs in the monoamine transporters, e.g. the human norepinephrine transporter (hNET) GXXXRXG motif which was the focus of the present study, are likely to be important structural features in determining function. This motif was investigated by mutating the glycines to glutamate (causing loss of function) and alanine, and the arginine to glycine. The effects of hG117A, hR121G and hG123A mutations on function were examined in COS-7 cells and compared to hNET. Substrate K-m values were decreased for hG117A and hG123A, and their K values for inhibition of [3 H]nisoxetine binding were decreased 3-4-fold and 4-6-fold, respectively. Transporter turnover was reduced to 65% of hNET for hG117A and hR121G and to 28% for hG123A, suggesting that substrate translocation is impaired. K values of nisoxetine and desipramine for inhibition of [H-3]norepinephrine uptake were increased by 5-fold for hG117A, with no change for cocaine. The K-i value of cocaine was increased by 3-fold for hG123A, with no change for nisoxetine and desipramine. However, there were no effects of the mutations on the K-d of [H-3]nisoxetine binding or K-i values of desipramine or cocaine for inhibition of [H-3]nisoxetine binding. Hence, glycine residues of the GXXXRXG motif are important determinants of NET expression and function, while the arginine residue does not have a major role. This study also showed that antidepressants and psychostimulants have different NET binding sites and provided the first evidence that different sites on the NET are involved in the binding of inhibitors and their competitive inhibition of substrate uptake. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The nervous system contains an abundance of taurine, a neuroactive sulfonic acid. Antibodies were generated against two cloned high-affinity taurine transporters, referred to in this study as TAUT-1 and TAUT-2. The distribution of such was compared with the distribution of taurine in the rat brain, pituitary, and retina. The cellular pattern of [H-3] taurine uptake in brain slices, pituitary slices, and retinas was examined by autoradiography. TAUT-2 was predominantly associated with glial cells, including the Bergmann glial cells of the cerebellum and astrocytes in brain areas such as hippocampus. Low-level labeling for TAUT-2 was also observed in some neurones such as CA1 pyramidal cells. TAUT-1 distribution was more limited; in the posterior pituitary TAUT-1 was associated with the pituicytes but was absent from glial cells in the intermediate and anterior lobes. Conversely, in the brain TAUT-1 was associated with cerebellar Purkinje cells and, in the retina, with photoreceptors and bipolar cells. Our data suggest that intracellular taurine levels in glial cells and neurons may be regulated in part by specific high-affinity taurine transporters. The heterogeneous distribution of taurine and its transporters in the brain does not reconcile well with the possibility that taurine acts solely as a ubiquitous osmolyte in nervous tissues. (C) 2002 Wiley-Liss, Inc.
Resumo:
The N-methyl-D-aspartate (NMDA)-selective subtype of ionotropic glutamate receptor is of importance in neuronal differentiation and synapse consolidation, activity-dependent forms of synaptic plasticity, and excitatory amino acid-mediated neuronal toxicity [Neurosci. Res. Program, Bull. 19 (1981) 1; Lab. Invest. 68 (1993) 372]. NMDA receptors exist in vivo as tetrameric or pentameric complexes comprising proteins from two families of homologous subunits, designated NR1 and NR2(A-D) [Biochem. Biophys. Res. Commun. 185 (1992) 826]. The gene coding for the human NR1 subunit (hNR1) is composed of 21 exons, three of which (4, 20 and 21) can be differentially spliced to generate a total of eight distinct subunit variants. We detail here a competitive RT-PCR (cRT-PCR) protocol to quantify endogenous levels of hNR1 splice variants in autopsied human brain. Quantitation of each hNR1 splice variant is performed using standard curve methodology in which a known amount of synthetic ribonucleic acid competitor (internal standard) is co-amplified against total RNA. This method can be used for the quantitation of hNR1 mRNA levels in response to acute or chronic disease states, in particular in the glutamatergic-associated neuronal loss observed in Alzheimer's disease [J. Neurochem. 78 (2001) 175]. Furthermore, alterations in hNR1 mRNA expression may be reflected at the translational level, resulting in functional changes in the NMDA receptor. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
The apparent L-[H-3]glutamate uptake rate (v') was measured in synaptic vesicles isolated from cerebral cortex synaptosomes prepared from autopsied Alzheimer and non-Alzheimer dementia cases, and age-matched controls. The initial synaptosome preparations exhibited similar densities of D-[H-3]aspartate membrane binding sites (B-MAX values) in the three groups. In control brain the temporal cortex D-[H-3]aspartate B-MAX was 132% of that in motor cortex, parallel with the L- [H-3]glutamate v' values (temporal = 139% of motor; NS). Unlike D- [H-3]aspartate B-MAX values, L- [H-3]glutamate v' values were markedly and selectively lower in Alzheimer brain preparations than in controls, particularly in temporal cortex. The difference could not be attributed to differential effects of autopsy interval or age at death. Non-Alzheimer dementia cases resembled controls. The selective loss of vesicular glutamate transport is consistent with a dysfunction in the recycling of transmitter glutamate.
Resumo:
Background: Alcohol consumption has beneficial effects on mortality which are mainly due to reduction in cardiovascular disease. These are believed to be due, at least in part, to the increase in plasma high-density lipoprotein (HDL) which is associated with alcohol consumption. It has been proposed that ADH3 genotype modifies the relationships between alcohol intake and cardiovascular disease by altering the HDL response to alcohol. The aim of this paper was to test for effects of ADH2 and ADH3 genotypes on the response of HDL components to habitual alcohol consumption. Methods: Adult male and female subjects were genotyped for ADH2 and ADH3; and plasma HDL cholesterol, apolipoprotein A-I, and apolipoprotein A-II were measured. Nine hundred one subjects had both ADH2 and ADH3 genotypes and HDL cholesterol results, while 753 had both genotypes and all three lipid results. The effect of alcohol intake on the three measured HDL components, and a factor score derived from them, was estimated for each of the ADH2 and ADH3 genotype groups. Results: All the measured components of HDL increased with increasing alcohol consumption over the range of intakes studied, 0-4 drinks per day. There were no significant interactions between alcohol consumption and ADH2 or ADH3 genotypes. Conclusions: The concept that alcohol dehydrogenase genotype and alcohol metabolic rate modify the effects of alcohol on plasma HDL concentration is not supported by our results.