902 resultados para glandular wing
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The silk glands of bees are a good model for the study of cell death in insects. With the objective to detect the nuclear features during glandular regression stage, larvae at the last instar and pre-pupae were collected and their silk glands were dissected and processed for ultrastructural analysis and histologically for cytochemical and imunocytochemical analysis. The results showed that the cellular nuclei exhibited characteristics of death by atypical apoptosis as well as autophagic cell death. Among the apoptosis characteristic were: nuclear strangulation with bleb formation in some nuclei, DNA fragmentation in most of the nuclei and nucleolar fragmentation. Centripetal chromatin compaction was observed in many nuclei, forming a perichromatin halo differing from typical apoptotic nuclei. With regards to the characteristics of autophagic-programmed cell death, most relevant was the delay in the collapse of many nuclei. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Termites are eusocial insects that have a peculiar and intriguing system of communication using pheromones. The termite pheromones are composed of a blend of chemical substances and they coordinate different social interactions or activities, including foraging, building, mating, defense, and nestmate recognition. Some of these sociochemicals are volatile, spreading in the air, and others are contact pheromones, which are transmitted by trophallaxis and grooming. Among the termite semiochemicals, the most known are alarm, trail, sex pheromones, and hydrocarbons responsible for the recognition of nestmates. The sources of the pheromones are exocrine glands located all over the termite body. The principal exocrine structures considered pheromone-producing glands in Isoptera are the frontal, mandibular, salivary or labial, sternal, and tergal glands. The frontal gland is the source of alarm pheromone and defensive chemicals, but the mandibular secretions have been little studied and their function is not well established in Isoptera. The secretion of salivary glands involves numerous chemical compounds, some of them without pheromonal function. The worker saliva contains a phagostimulating pheromone and probably a building pheromone, while the salivary reservoir of some soldiers contains defensive chemicals. The sternal gland is the only source of trail-following pheromone, whereas sex pheromones are secreted by two glandular sources, the sternal and tergal glands. To date, the termite semiochemicals have indicated that few molecules are involved in their chemical communication, that is, the same compound may be secreted by different glands, different castes and species, and for different functions, depending on the concentration. In addition to the pheromonal parsimony, recent studies also indicate the occurrence of a synergic effect among the compounds involved in the chemical communication of Isoptera. (C) 2010 Elsevier B.V.
Resumo:
In general, the exocrine glands of social insects are structures involved in the chemical communication associated with social life. Here, we report the discovery of an unknown tegumental gland that is present in the female imagoes of Cornitermes cumulans and occurs next to the well-developed tergal glands that have previously been described. The tegumental glands release their secretion in the intersegmental membrane and are composed of bicellular units, a secretory cell and a canal cell, that are closely located to the epidermal cells in the inferior part of the eighth and ninth tergites. The ultrastructure of the glandular cells showed abundant smooth endoplasmic reticulum, suggesting that the secretion may be pheromonal, although its function is still unknown. These exocrine structures are facing the tergal glands, and we hypothesized that they act synergistically with the tergal glands to generate short-range attraction during tandem behavior. Microsc. Res. Tech. 73: 1005-1008, 2010. (C) 2010 Wiley-Liss, Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Cytochemistry studies of the nuclei of the venom glands' cells of worker bees of Apis mellifera indicated that there is a higher activity in the young workers while there is a predominance of degenerative characteristics in the older workers. In addition, we demonstrated that there is an occurrence of differential nuclear synthetic activities between the cells of the distal and the proximal regions of the secretory filament and of the venom reservoir. Signs of a higher nuclear activity were evidenced at the distal regions of this gland in 14-day old workers, while at the more proximal regions of the venom gland of 40-day old workers we identified the most obvious signs of degeneration. Therefore, it was evident that the process of glandular degeneration begins at the distal region of the venom gland instead of beginning at the proximal region as had been established previously. In addition, characteristics of nuclear synthetic activities were noted in the cells of the proximal region of the reservoir; these cells were thought to be non-secretory.
Resumo:
In order to investigate the action of the juvenile hormone (JH) on honeybee caste differentiation two exocrine glands, Koschewnikow and Dufour glands, were chosen for study. Two combs (I & II) were taken from a single posture of a queen to use for this research. In comb I the larvae were treated with a topical application of JH in Acetone, and those from the comb II (control group) received only Acetone. Immediately after the emergence of the workers, their glands were dissected and prepared for microscopic measurements. The results showed cell area reduction in the Koschewnikow gland induced by the JH application. The results for the Dufour gland displayed taller epithelial cells with the JH application. The difference in glandular responses to the JH relates to gland function, hormone targets, and individual homeostasis.
Resumo:
Trigona hypogea, T. crassipes, and T. necrophaga are obligate necrophagous bees that differ from the majority of bees by using animal material instead of pollen as a protein resource. Since T. hypogea does not store protein in cerumen pots, it was thought that glandular secretions were its only larval protein source. This is in contrast to T. necrophaga which stores a yellowish proteinaceous jelly in the pots. Our results show that the larval food of T. hypogea has a higher protein content than the food stored in the pots and that it presents an electrophoretical protein pattern similar to that of the hypopharyngeal gland, indicating that workers add glandular secretions to the larval food while provisioning the brood cells. Thus, it can be suggested that T. hypogea has a provisioning behavior similar to other Meliponinae. The presence of several bands of proteins in the food stored in the pots shows that this species stores carrion mixed with honey in storage pots. Morphological data suggest that both larvae and adults make use of the same foodstuffs. These results also suggest that T. hypogea is more similar to other necrophagous species than it is to T. necrophaga (a more specialized bee).
Resumo:
We recorded and quantified the nocturnal activity and parental care of a brooding Common Potoo (Nyctibius griseus) using an infrared camera in southeastern Brazil. Parents alternated care of the nestling and decreased their presence as the nestling grew. Nestling feeding on passing insects while sitting on the nest, movements on the nest, wing exercising, preening, and defecating were recorded primarily while it was alone. The frequency of begging calls per hour was higher when the nestling was accompanied by one of the parents. Nocturnal recordings of this species on the nest revealed behaviors that were not cited in past studies, including: feedings bouts on passing flies performed by the nestling and adults, nestling defecation, and nestling plumage maintenance. The well-known plus newly quantified behaviors of the Common Potoo reinforce their value to survival during the long nestling period. Received 24 May 2010. Accepted 14 September 2010.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Este é um primeiro relato sobre a presença de células glandulares no tegumento lateral do mesotórax de abelhas da subfamília Meliponinae. Trata-se de células glandulares de classe III que estão presentes em rainhas, operárias e machos. As glândulas são mais desenvolvidas nas rainhas que nas operárias e nestas mais que nos machos.
Resumo:
Objetivando auxiliar trabalhos taxonômicos e farmacobotânicos, foram realizados estudos morfoanatômicos dos órgãos vegetativos de Piper crassinervium H.B. & K. (jaborandi). O material foi analisado seguindo-se técnicas usuais de corte e coloração. P. crassinervium é um arbusto de caule ereto, de folhas estipuladas e alternas. Dentre as características anatômicas importantes para a sua identificação destacam-se: parênquima cortical radical com esclereídes; córtex caulinar com faixas descontínuas de colênquima e tecido vascular organizado em dois círculos descontínuos de feixes colaterais, delimitados por endoderme com estrias de Caspary; folha dorsiventral, hipoestomática, com estômatos ciclocíticos e tetracíticos e hipoderme unisseriada, porém, com 1-3 camadas de células na região da nervura principal; parênquima clorofiliano com idioblastos oleíferos; tricomas glandulares na epiderme unisseriada e idioblastos com pequenos cristais aciculares no parênquima em todos os órgãos.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)