939 resultados para genome wide complex trait analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Systemic immune activation, a major determinant of HIV disease progression, is the result of a complex interplay between viral replication, dysregulation of the immune system, and microbial translocation due to gut mucosal damage. While human genetic variants influencing HIV viral load have been identified, it is unknown to what extent the host genetic background contributes to inter-individual differences in other determinants of HIV pathogenesis like gut damage and microbial translocation. Using samples and data from 717 untreated participants in the Swiss HIV Cohort Study and a genome-wide association study design, we searched for human genetic determinants of plasma levels of intestinal fatty-acid binding protein (I-FABP/FABP2), a marker of gut damage, and of soluble sCD14 (sCD14), a marker of LPS bioactivity and microbial translocation. We also assessed the correlations between HIV viral load, sCD14 and I-FABP. While we found no genome-wide significant determinant of the tested plasma markers, we observed strong associations between sCD14 and both HIV viral load and I-FABP, shedding new light on the relationships between processes that drive progression of untreated HIV infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recurrent airway obstruction (RAO), or 'heaves', is a common performance-limiting allergic respiratory disease of mature horses. It is related to sensitization and exposure to mouldy hay and has a familial basis with a complex mode of inheritance. In a previous study, we detected a QTL for RAO on ECA 13 in a half-sib family of European Warmblood horses. In this study, we genotyped additional markers in the family and narrowed the QTL down to about 1.5 Mb (23.7-25.2 Mb). We detected the strongest association with SNP BIEC2-224511 (24,309,405 bp). We also obtained SNP genotypes in an independent cohort of 646 unrelated Warmblood horses. There was no genome-wide significant association with RAO in these unrelated horses. However, we performed a genotypic association study of the SNPs on ECA 13 in these unrelated horses, and the SNP BIEC2-224511 also showed the strongest association with RAO in the unrelated horses (p(raw) = 0.00037). The T allele at this SNP was associated with RAO both in the family and the unrelated horses. Thus, the association study in the unrelated animals provides independent support for the previously detected QTL. The association study allows further narrowing of the QTL interval to about 0.5 Mb (24.0-24.5 Mb). We sequenced the coding regions of the genes in the critical region but did not find any associated coding variants. Therefore, the causative variant underlying this QTL is likely to be a regulatory mutation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The patterns of genomic divergence during ecological speciation are shaped by a combination of evolutionary forces. Processes such as genetic drift, local reduction of gene flow around genes causing reproductive isolation, hitchhiking around selected variants, variation in recombination and mutation rates are all factors that can contribute to the heterogeneity of genomic divergence. On the basis of 60 fully sequenced three-spined stickleback genomes, we explore these different mechanisms explaining the heterogeneity of genomic divergence across five parapatric lake and river population pairs varying in their degree of genetic differentiation. We find that divergent regions of the genome are mostly specific for each population pair, while their size and abundance are not correlated with the extent of genome-wide population differentiation. In each pair-wise comparison, an analysis of allele frequency spectra reveals that 25–55% of the divergent regions are consistent with a local restriction of gene flow. Another large proportion of divergent regions (38–75%) appears to be mainly shaped by hitchhiking effects around positively selected variants. We provide empirical evidence that alternative mechanisms determining the evolution of genomic patterns of divergence are not mutually exclusive, but rather act in concert to shape the genome during population differentiation, a first necessary step towards ecological speciation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Canine transmissible venereal tumor (CTVT) is a parasitic cancer clone that has propagated for thousands of years via sexual transfer of malignant cells. Little is understood about the mechanisms that converted an ancient tumor into the world's oldest known continuously propagating somatic cell lineage. We created the largest existing catalog of canine genome-wide variation and compared it against two CTVT genome sequences, thereby separating alleles derived from the founder's genome from somatic drivers of clonal transmissibility. We show that CTVT has undergone continuous adaptation to its transmissible allograft niche, with overlapping mutations at every step of immunosurveillance, particularly self-antigen presentation and apoptosis. We also identified chronologically early somatic mutations in oncogenesis- and immune-related genes that may represent key initiators of clonal transmissibility. Thus, we provide the first insights into the specific genomic aberrations that underlie CTVT's dogged perseverance in canids around the world.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The evolution of ants is marked by remarkable adaptations that allowed the development of very complex social systems. To identify how ant-specific adaptations are associated with patterns of molecular evolution, we searched for signs of positive selection on amino-acid changes in proteins. We identified 24 functional categories of genes which were enriched for positively selected genes in the ant lineage. We also reanalyzed genome-wide datasets in bees and flies with the same methodology, to check whether positive selection was specific to ants or also present in other insects. Notably, genes implicated in immunity were enriched for positively selected genes in the three lineages, ruling out the hypothesis that the evolution of hygienic behaviors in social insects caused a major relaxation of selective pressure on immune genes. Our scan also indicated that genes implicated in neurogenesis and olfaction started to undergo increased positive selection before the evolution of sociality in Hymenoptera. Finally, the comparison between these three lineages allowed us to pinpoint molecular evolution patterns that were specific to the ant lineage. In particular, there was ant-specific recurrent positive selection on genes with mitochondrial functions, suggesting that mitochondrial activity was improved during the evolution of this lineage. This might have been an important step toward the evolution of extreme lifespan that is a hallmark of ants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND AND OBJECTIVE Connective tissue grafts are frequently applied, together with Emdogain(®) , for root coverage. However, it is unknown whether fibroblasts from the gingiva and from the palate respond similarly to Emdogain. The aim of this study was therefore to evaluate the effect of Emdogain(®) on fibroblasts from palatal and gingival connective tissue using a genome-wide microarray approach. MATERIAL AND METHODS Human palatal and gingival fibroblasts were exposed to Emdogain(®) and RNA was subjected to microarray analysis followed by gene ontology screening with Database for Annotation, Visualization and Integrated Discovery functional annotation clustering, Kyoto Encyclopedia of Genes and Genomes pathway analysis and the Search Tool for the Retrieval of Interacting Genes/Proteins functional protein association network. Microarray results were confirmed by quantitative RT-PCR analysis. RESULTS The transcription levels of 106 genes were up-/down-regulated by at least five-fold in both gingival and palatal fibroblasts upon exposure to Emdogain(®) . Gene ontology screening assigned the respective genes into 118 biological processes, six cellular components, eight molecular functions and five pathways. Among the striking patterns observed were the changing expression of ligands targeting the transforming growth factor-beta and gp130 receptor family as well as the transition of mesenchymal epithelial cells. Moreover, Emdogain(®) caused changes in expression of receptors for chemokines, lipids and hormones, and for transcription factors such as SMAD3, peroxisome proliferator-activated receptor gamma and those of the ETS family. CONCLUSION The present data suggest that Emdogain(®) causes substantial alterations in gene expression, with similar patterns observed in palatal and gingival fibroblasts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES Saliva has been implicated to support oral wound healing, a process that requires a transient inflammatory reaction. However, definitive proof that saliva can provoke an inflammatory response remained elusive. MATERIALS AND METHODS We investigated the ability of freshly harvested and sterile-filtered saliva to cause an inflammatory response of oral fibroblasts and epithelial cells. The expression of cytokines and chemokines was assessed by microarray, RT-PCR, immunoassays, and Luminex technology. The involvement of signaling pathways was determined by Western blot analysis and pharmacologic inhibitors. RESULTS We report that sterile-filtered whole saliva was a potent inducer of IL-6 and IL-8 in fibroblasts from the gingiva, the palate, and the periodontal ligament, but not of oral epithelial cells. This strong inflammatory response requires nuclear factor-kappa B and mitogen-activated protein kinase signaling. The pro-inflammatory capacity is heat stable and has a molecular weight of <40 kDa. Genome-wide microarrays and Luminex technology further revealed that saliva substantially increased expression of other inflammatory genes and various chemokines. To preclude that the observed pro-inflammatory activity is the result of oral bacteria, sterile-filtered parotid saliva, collected under almost aseptic conditions, was used and also increased IL-6 and IL-8 expression in gingiva fibroblasts. The inflammatory response was, furthermore, independent of MYD88, an adapter protein of the Toll-like receptor signaling pathway. CONCLUSIONS We conclude that saliva can provoke a robust inflammatory response in oral fibroblasts involving the classical nuclear factor-kappa B and mitogen-activated protein kinase signaling pathway. CLINICAL RELEVANCE Since fibroblasts but not epithelial cells show a strong inflammatory response, saliva may support the innate immunity of defect sites exposing the oral connective tissue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The identification of quantitative trait loci (QTL) such as height and their underlying causative variants is still challenging and often requires large sample sizes. In humans hundreds of loci with small effects control the heritable portion of height variability. In domestic animals, typically only a few loci with comparatively large effects explain a major fraction of the heritability. We investigated height at withers in Shetland ponies and mapped a QTL to ECA 6 by genome-wide association (GWAS) using a small cohort of only 48 animals and the Illumina equine SNP70 BeadChip. Fine-mapping revealed a shared haplotype block of 793 kb in small Shetland ponies. The HMGA2 gene, known to be associated with height in horses and many other species, was located in the associated haplotype. After closing a gap in the equine reference genome we identified a non-synonymous variant in the first exon of HMGA2 in small Shetland ponies. The variant was predicted to affect the functionally important first AT-hook DNA binding domain of the HMGA2 protein (c.83G>A; p.G28E). We assessed the functional impact and found impaired DNA binding of a peptide with the mutant sequence in an electrophoretic mobility shift assay. This suggests that the HMGA2 variant also affects DNA binding in vivo and thus leads to reduced growth and a smaller stature in Shetland ponies. The identified HMGA2 variant also segregates in several other pony breeds but was not found in regular-sized horse breeds. We therefore conclude that we identified a quantitative trait nucleotide for height in horses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over 250 Mendelian traits and disorders, caused by rare alleles have been mapped in the canine genome. Although each disease is rare in the dog as a species, they are collectively common and have major impact on canine health. With SNP-based genotyping arrays, genome-wide association studies (GWAS) have proven to be a powerful method to map the genomic region of interest when 10-20 cases and 10-20 controls are available. However, to identify the genetic variant in associated regions, fine-mapping and targeted re-sequencing is required. Here we present a new approach using whole-genome sequencing (WGS) of a family trio without prior GWAS. As a proof-of-concept, we chose an autosomal recessive disease known as hereditary footpad hyperkeratosis (HFH) in Kromfohrl änder dogs. To our knowledge, this is the first time this family trio WGS-approach, has successfully been used to identify a genetic variant that perfectly segregates with a canine disorder. The sequencing of three Kromfohrl änder dogs from a family trio (an affected offspring and both its healthy parents) resulted in an average genome coverage of 9.2X per individual. After applying stringent filtering criteria for candidate causative coding variants, 527 single nucleotide variants (SNVs) and 15 indels were found to be homozygous in the affected offspring and heterozygous in the parents. Using the computer software packages ANNOVAR and SIFT to functionally annotate coding sequence differences and to predict their functional effect, resulted in seven candidate variants located in six different genes. Of these, only FAM83G:c155G>C (p.R52P) was found to be concordant in eight additional cases and 16 healthy Kromfohrl änder dogs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Androgens are precursors for sex steroids and are predominantly produced in the human gonads and the adrenal cortex. They are important for intrauterine and postnatal sexual development and human reproduction. Although human androgen biosynthesis has been extensively studied in the past, exact mechanisms underlying the regulation of androgen production in health and disease remain vague. Here, the knowledge on human androgen biosynthesis and regulation is reviewed with a special focus on human adrenal androgen production and the hyperandrogenic disorder of polycystic ovary syndrome (PCOS). Since human androgen regulation is highly specific without a good animal model, most studies are performed on patients harboring inborn errors of androgen biosynthesis, on human biomaterials and human (tumor) cell models. In the past, most studies used a candidate gene approach while newer studies use high throughput technologies to identify novel regulators of androgen biosynthesis. Using genome wide association studies on cohorts of patients, novel PCOS candidate genes have been recently described. Variant 2 of the DENND1A gene was found overexpressed in PCOS theca cells and confirmed to enhance androgen production. Transcriptome profiling of dissected adrenal zones established a role for BMP4 in androgen synthesis. Similarly, transcriptome analysis of human adrenal NCI-H295 cells identified novel regulators of androgen production. Kinase p38α (MAPK14) was found to phosphorylate CYP17 for enhanced 17,20 lyase activity and RARB and ANGPTL1 were detected in novel networks regulating androgens. The discovery of novel players for androgen biosynthesis is of clinical significance as it provides targets for diagnostic and therapeutic use.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DNA sequence variation is currently a major source of data for studying human origins, evolution, and demographic history, and for detecting linkage association of complex diseases. In this dissertation, I investigated DNA variation in worldwide populations from two ∼10 kb autosomal regions on 22q11.2 (noncoding) and 1q24 (introns). A total of 75 variant sites were found among 128 human sequences in the 22q11.2 region, yielding an estimate of 0.088% for nucleotide diversity (π), and a total of 52 variant sites were found among 122 human sequences in the 1q24 region with an estimated π value of 0.057%. The data from these two regions and a 10 kb noncoding region on Xq13.3 all show a strong excess of low-frequency variants in comparison to that expected from an equilibrium population, indicating a relatively recent population expansion. The effective population sizes estimated from the three regions were 11,000, 12,700, and 8,600, respectively, which are close to the commonly used value of 10,000. In each of the two autosomal regions, the age of the most recent common ancestor (MRCA) was estimated to be older than 1 million years among all the sequences and ∼600,000 years among non-African sequences, providing first evidence from autosomal noncoding or intronic regions for a genetic history of humans much more ancient than the emergence of modern humans. The ancient genetic history of humans indicates no severe bottleneck during the evolution of humans in the last half million years; otherwise, much of the ancient genetic history would have been lost during a severe bottleneck. This study strongly suggests that both the “out of Africa” and the multiregional models are too simple for explaining the evolution of modern humans. A compilation of genome-wide data revealed that nucleotide diversity is highest in autosomal regions, intermediate in X-linked regions, and lowest in Y-linked regions. The data suggest the existence of background selection or selective sweep on Y-linked loci. In general, the nucleotide diversity in humans is low compared to that in chimpanzee and Drosophila populations. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Linkage disequilibrium (LD) is defined as the nonrandom association of alleles at two or more loci in a population and may be a useful tool in a diverse array of applications including disease gene mapping, elucidating the demographic history of populations, and testing hypotheses of human evolution. However, the successful application of LD-based approaches to pertinent genetic questions is hampered by a lack of understanding about the forces that mediate the genome-wide distribution of LD within and between human populations. Delineating the genomic patterns of LD is a complex task that will require interdisciplinary research that transcends traditional scientific boundaries. The research presented in this dissertation is predicated upon the need for interdisciplinary studies and both theoretical and experimental projects were pursued. In the theoretical studies, I have investigated the effect of genotyping errors and SNP identification strategies on estimates of LD. The primary importance of these two chapters is that they provide important insights and guidance for the design of future empirical LD studies. Furthermore, I analyzed the allele frequency distribution of 26,530 single nucleotide polymorphisms (SNPs) in three populations and generated the first-generation natural selection map of the human genome, which will be an important resource for explaining and understanding genomic patterns of LD. Finally, in the experimental study, I describe a novel and simple, low-cost, and high-throughput SNP genotyping method. The theoretical analyses and experimental tools developed in this dissertation will facilitate a more complete understanding of patterns of LD in human populations. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The histone acetyltransferase, GCN5, is essential for survival of mice during embryogenesis. GCN5 null embryos die early during development due to increased apoptosis. We have demonstrated that the increased apoptosis in associated with increased p53 protein levels. Loss of p53 rescues the embryonic apoptosis in the GCN5 null embryos. These results raised the question of what molecular trigger leads to p53 stabilization and cell death in the absence of GCN5. p53 is generally referred to as the gatekeeper of the cell, monitoring cellular responses to DNA damage, genotoxic stress, and other unfavorable conditions in the cell. Therefore, we examined individual cells in wild type and mutant embryos for gross chromosomal aberrations that might trigger a genome integrity checkpoint. Karyotype analysis indicates that approximately 30% of the cells in an E8.5 GCN5 null embryo display chromosomal aberrations, predominantly chromosomal end adhesions and associations. In wild type E8.5 embryos, only 6% of the cells have chromosomal aberrations. Recent data using telomeric FISH demonstrates that cells from GCN5 null embryos have a decreased telomeric signal. Telomere maintenance is essential for maintaining genome integrity. Telomeric defects are associated with loss of chromosomes and chromosomal rearrangements that can lead to detrimental gene fusions involved in many types of cancers. Little is known about the chromatin structures present near the telomeric ends, or whether any of the telomere-associated proteins are subject to post-translational modification such as acetylation. Our results are the first data to demonstrate the involvement of a histone acetyltransferase, GCN5, in maintaining genome integrity through telomere maintenance and/or capping. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hypertension (HT) is mediated by the interaction of many genetic and environmental factors. Previous genome-wide linkage analysis studies have found many loci that show linkage to HT or blood pressure (BP) regulation, but the results were generally inconsistent. Gene by environment interaction is among the reasons that potentially explain these inconsistencies between studies. Here we investigate influences of gene by smoking (GxS) interaction on HT and BP in European American (EA), African American (AA) and Mexican American (MA) families from the GENOA study. A variance component-based method was utilized to perform genome-wide linkage analysis of systolic blood pressure (SBP), diastolic blood pressure (DBP), and HT status, as well as bivariate analysis for SBP and DBP for smokers, non-smokers, and combined groups. The most significant results were found for SBP in MA. The strongest signal was for chromosome 17q24 (LOD = 4.2), increased to (LOD = 4.7) in bivariate analysis but there was no evidence of GxS interaction at this locus (p = 0.48). Two signals were identified only in one group: on chromosome 15q26.2 (LOD = 3.37) in non-smokers and chromosome 7q21.11 (LOD = 1.4) in smokers, both of which had strong evidence for GxS interaction (p = 0.00039 and 0.009 respectively). There were also two other signals, one on chromosome 20q12 (LOD = 2.45) in smokers, which became much higher in the combined sample (LOD = 3.53), and one on chromosome 6p22.2 (LOD = 2.06) in non-smokers. Neither peak had very strong evidence for GxS interaction (p = 0.08 and 0.06 respectively). A fine mapping association study was performed using 200 SNPs in 30 genes located under the linkage signals on chromosomes 15 and 17. Under the chromosome 15 peak, the association analysis identified 6 SNPs accounting for a 7 mmHg increase in SBP in MA non-smokers. For the chromosome 17 linkage peak, the association analysis identified 3 SNPs accounting for a 6 mmHg increase in SBP in MA. However, none of these SNPs was significant after correcting for multiple testing, and accounting for them in the linkage analysis produced very small reductions in the linkage signal. ^ The linkage analysis of BP traits considering the smoking status produced very interesting signals for SBP in the MA population. The fine mapping association analysis gave some insight into the contribution of some SNPs to two of the identified signals, but since these SNPs did not remain significant after multiple testing correction and did not explain the linkage peaks, more work is needed to confirm these exploratory results and identify the culprit variations under these linkage peaks. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite extensive research, the etiology of adult glioma remains largely unknown. We sought to further explore the role of immune and genetic factors in glioma etiology using data from the Harris County Brain Tumor Study and the first U.S. genome-wide association study of glioma. First, using a case-control study design, we examined the association between adult glioma risk and surrogates of the timing and frequency of common early childhood infections, birth order and sibship size, respectively. We found that each one-unit increase in birth order was associated with a 12% decreased risk of glioma development in adulthood (OR=0.88, 95% CI=0.81-0.96); however, sibship size was not associated with adult glioma risk (OR=0.96, 95% CI=0.91-1.02). Second, we used a multi-strategic approach to explore the relationships between glioma risk, history of asthma/allergies, and 23 functional SNPs in 11 inflammation genes. We found three inflammation gene SNPs to be significantly associated with glioma risk (COX2/PTGS2 rs20417 [OR=1.41]; IL10 rs1800896 [OR=1.57]; and IL13 rs20541 [OR=0.39]). Joint effects analysis of the risk-conferring alleles of these three SNPs revealed a trend of increasing risk with increasing number of adverse alleles among those without asthma/allergies (p<0.0001). Finally, we conducted a case-only study to explore pairwise SNP-SNP interactions in immune-related pathways among a population of 1304 non-Hispanic white glioma cases. After correction for multiple comparisons, we found 279 significant SNP-SNP interactions among polymorphisms of immune-related genes, many of which have not been previously examined. Our results, cumulatively, suggest an important role for immune and genetic factors in glioma etiology and provide several new hypotheses for future studies.^