994 resultados para gas spectral radiation
Resumo:
BACKGROUND AND PURPOSE: A right-to-left shunt can be identified by contrast transcranial Doppler ultrasonography (c-TCD) at rest and/or after a Valsalva maneuver (VM) or by arterial blood gas (ABG) measurement. We assessed the influence of controlled strain pressures and durations during VM on the right-to-left passage of microbubbles, on which depends the shunt classification by c-TCD, and correlated it with the right-to-left shunt evaluation by ABG measurements in stroke patients with patent foramen ovale (PFO). METHODS: We evaluated 40 stroke patients with transesophageal echocardiography-documented PFO. The microbubbles were recorded with TCD at rest and after 4 different VM conditions with controlled duration and target strain pressures (duration in seconds and pressure in cm H2O, respectively): V5-20, V10-20, V5-40, and V10-40. The ABG analysis was performed after pure oxygen breathing in 34 patients, and the shunt was calculated as percentage of cardiac output. RESULTS: Among all VM conditions, V5-40 and V10-40 yielded the greatest median number of microbubbles (84 and 95, respectively; P<0.01). A significantly larger number of microbubbles were detected in V5-40 than in V5-20 (P<0.001) and in V10-40 than in V10-20 (P<0.01). ABG was not sensitive enough to detect a shunt in 31 patients. CONCLUSIONS: The increase of VM expiratory pressure magnifies the number of microbubbles irrespective of the strain duration. Because the right-to-left shunt classification in PFO is based on the number of microbubbles, a controlled VM pressure is advised for a reproducible shunt assessment. The ABG measurement is not sensitive enough for shunt assessment in stroke patients with PFO.
Resumo:
Exposure to solar ultraviolet (UV) radiation is the main causative factor for skin cancer. UV exposure depends on environmental and individual factors, but individual exposure data remain scarce. While ground UV irradiance is monitored via different techniques, it is difficult to translate such observations into human UV exposure or dose because of confounding factors. A multi-disciplinary collaboration developed a model predicting the dose and distribution of UV exposure on the basis of ground irradiation and morphological data. Standard 3D computer graphics techniques were adapted to develop a simulation tool that estimates solar exposure of a virtual manikin depicted as a triangle mesh surface. The amount of solar energy received by various body locations is computed for direct, diffuse and reflected radiation separately. Dosimetric measurements obtained in field conditions were used to assess the model performance. The model predicted exposure to solar UV adequately with a symmetric mean absolute percentage error of 13% and half of the predictions within 17% range of the measurements. Using this tool, solar UV exposure patterns were investigated with respect to the relative contribution of the direct, diffuse and reflected radiation. Exposure doses for various body parts and exposure scenarios of a standing individual were assessed using erythemally-weighted UV ground irradiance data measured in 2009 at Payerne, Switzerland as input. For most anatomical sites, mean daily doses were high (typically 6.2-14.6 Standard Erythemal Dose, SED) and exceeded recommended exposure values. Direct exposure was important during specific periods (e. g. midday during summer), but contributed moderately to the annual dose, ranging from 15 to 24% for vertical and horizontal body parts, respectively. Diffuse irradiation explained about 80% of the cumulative annual exposure dose.
Resumo:
This paper identifies the key sectors in greenhouse gas emissions of the Uruguayan economy through input-output analysis. This allows to precisely determine the role played by the different productive sectors and their relationship with other sectors in the relation between the Uruguayan productive structure and atmospheric pollution. In order to guide policy design for GHG reduction, we decompose sectors liability between the pollution generated through their own production processes and the pollution indirectly generated in the production processes of other sectors. The results show that all the key polluting sectors for the different contaminants considered are relevant because of their own emissions, except for the sector Motor vehicles and oil retail trade, which is relevant in CO2 emissions because of its pure, both backward and forward, linkages. Finally, the best policy channels for controlling and reducing GHGs emissions are identified, and compared with the National Climate Change Response Plan (NCCRP) lines of action.
Resumo:
Recent advances that have been made in our understanding of cancer biology and immunology show that infiltrated immune cells and cytokines in the tumor microenvironment may play different functions that appear tightly related to clinical outcomes. Strategies aimed at interfering with the cross-talk between microenvironment tumor cells and their cellular partners have been considered for the development of new immunotherapies. These novel therapies target different cell components of the tumor microenvironment and importantly, they may be coupled and boosted with classical treatments, such as radiotherapy. In this work, we try to summarize recent data on the microenvironment impact of radiation therapy, from pre-clinical research to the clinic, while taking into account that this new knowledge will probably translate into indication and objective of radiation therapy changes in the next future.
Resumo:
PURPOSE: We investigated the incidence and distribution of post-mortem gas detected with multidetector computed tomography (MDCT) to identify factors that could distinguish artifactual gas from cardiac air embolism. MATERIAL AND METHODS: MDCT data of 119 cadavers were retrospectively examined. Gas was semiquantitatively assessed in selected blood vessels, organs, and body spaces (82 total sites). RESULTS: Seventy-four of the 119 cadavers displayed gas (62.2%; CI 95% 52.8-70.9), and 56 (75.7%) displayed gas in the heart. Most gas was detected in the hepatic parenchyma (40%), right heart (38% ventricle, 35% atrium), inferior vena cava (30% infrarenally, 26% suprarenally), hepatic veins (26% left, 29% middle, 22% right), and portal spaces (29%). Male cadavers displayed gas more frequently than female cadavers. Gas was detected 5-84 hours after death; therefore, the post-mortem interval could not reliably predict gas distribution (rho = 0.719, p < 0.0001). We found that a large amount of putrefaction-generated gas in the right heart was associated with aggregated gas bubbles in the hepatic parenchyma (sensitivity = 100%, specificity = 89.7%). In contrast, gas in the left heart (sensitivity = 41.7%, specificity = 100%) or in periumbilical subcutaneous tissues (sensitivity = 50%, specificity = 96.3%) could not predict gas due to putrefaction. CONCLUSION: This study is the first to show that the appearance of post-mortem gas follows a specific distribution pattern. An association between intracardiac gas and hepatic parenchymal gas could distinguish between post-mortem-generated gas and vital air embolism. We propose that this finding provides a key for diagnosing death due to cardiac air embolism.
Resumo:
Au cours des deux dernières décennies, la technique d'imagerie arthro-scanner a bénéficié de nombreux progrès technologiques et représente aujourd'hui une excellente alternative à l'imagerie par résonance magnétique (IRM) et / ou arthro-IRM dans l'évaluation des pathologies de la hanche. Cependant, elle reste limitée par l'exposition aux rayonnements ionisants importante. Les techniques de reconstruction itérative (IR) ont récemment été mis en oeuvre avec succès en imagerie ; la littérature montre que l'utilisation ces dernières contribue à réduire la dose d'environ 40 à 55%, comparativement aux protocoles courants utilisant la rétroprojection filtrée (FBP), en scanner de rachis. A notre connaissance, l'utilisation de techniques IR en arthro-scanner de hanche n'a pas été évaluée jusqu'à présent. Le but de notre étude était d'évaluer l'impact de la technique ASIR (GE Healthcare) sur la qualité de l'image objective et subjective en arthro-scanner de hanche, et d'évaluer son potentiel en terme de réduction de dose. Pour cela, trente sept patients examinés par arthro-scanner de hanche ont été randomisés en trois groupes : dose standard (CTDIvol = 38,4 mGy) et deux groupes de dose réduite (CTDIvol = 24,6 ou 15,4 mGy). Les images ont été reconstruites en rétroprojection filtrée (FBP) puis en appliquant différents pourcentages croissants d'ASIR (30, 50, 70 et 90%). Le bruit et le rapport contraste sur bruit (CNR) ont été mesurés. Deux radiologues spécialisés en imagerie musculo-squelettique ont évalué de manière indépendante la qualité de l'image au niveau de plusieurs structures anatomiques en utilisant une échelle de quatre grades. Ils ont également évalué les lésions labrales et du cartilage articulaire. Les résultats révèlent que le bruit augmente (p = 0,0009) et le CNR diminue (p = 0,001) de manière significative lorsque la dose diminue. A l'inverse, le bruit diminue (p = 0,0001) et le contraste sur bruit augmente (p < 0,003) de manière significative lorsque le pourcentage d'ASIR augmente ; on trouve également une augmentation significative des scores de la qualité de l'image pour le labrum, le cartilage, l'os sous-chondral, la qualité de l'image globale (au delà de ASIR 50%), ainsi que le bruit (p < 0,04), et une réduction significative pour l'os trabuculaire et les muscles (p < 0,03). Indépendamment du niveau de dose, il n'y a pas de différence significative pour la détection et la caractérisation des lésions labrales (n=24, p = 1) et des lésions cartilagineuses (n=40, p > 0,89) en fonction du pourcentage d'ASIR. Notre travail a permis de montrer que l'utilisation de plus de 50% d'ASIR permet de reduire de manière significative la dose d'irradiation reçue par le patient lors d'un arthro-scanner de hanche tout en maintenant une qualité d'image diagnostique comparable par rapport à un protocole de dose standard utilisant la rétroprojection filtrée.
Resumo:
The identification of compositional changes in fumarolic gases of active and quiescent volcanoes is one of the mostimportant targets in monitoring programs. From a general point of view, many systematic (often cyclic) and randomprocesses control the chemistry of gas discharges, making difficult to produce a convincing mathematical-statisticalmodelling.Changes in the chemical composition of volcanic gases sampled at Vulcano Island (Aeolian Arc, Sicily, Italy) fromeight different fumaroles located in the northern sector of the summit crater (La Fossa) have been analysed byconsidering their dependence from time in the period 2000-2007. Each intermediate chemical composition has beenconsidered as potentially derived from the contribution of the two temporal extremes represented by the 2000 and 2007samples, respectively, by using inverse modelling methodologies for compositional data. Data pertaining to fumarolesF5 and F27, located on the rim and in the inner part of La Fossa crater, respectively, have been used to achieve theproposed aim. The statistical approach has allowed us to highlight the presence of random and not random fluctuations,features useful to understand how the volcanic system works, opening new perspectives in sampling strategies and inthe evaluation of the natural risk related to a quiescent volcano
Resumo:
PURPOSE: To investigate the influence of demethylation with 5-aza-cytidine (AZA) on radiation sensitivity and to define the intrinsic radiation sensitivity of methylation deficient colorectal carcinoma cells. METHODS AND MATERIALS: Radiation sensitizing effects of AZA were investigated in four colorectal carcinoma cell lines (HCT116, SW480, L174 T, Co115), defining influence of AZA on proliferation, clonogenic survival, and cell cycling with or without ionizing radiation. The methylation status for cancer or DNA damage response-related genes silenced by promoter methylation was determined. The effect of deletion of the potential target genes (DNMT1, DNMT3b, and double mutants) on radiation sensitivity was analyzed. RESULTS: AZA showed radiation sensitizing properties at >or=1 micromol/l, a concentration that does not interfere with the cell cycle by itself, in all four tested cell lines with a sensitivity-enhancing ratio (SER) of 1.6 to 2.1 (confidence interval [CI] 0.9-3.3). AZA successfully demethylated promoters of p16 and hMLH1, genes associated with ionizing radiation response. Prolonged exposure to low-dose AZA resulted in sustained radiosensitivity if associated with persistent genomic hypomethylation after recovery from AZA. Compared with maternal HCT116 cells, DNMT3b-defcient deficient cells were more sensitive to radiation with a SER of 2.0 (CI 0.9-2.1; p = 0.03), and DNMT3b/DNMT1-/- double-deficient cells showed a SER of 1.6 (CI 0.5-2.7; p = 0.09). CONCLUSIONS: AZA-induced genomic hypomethylation results in enhanced radiation sensitivity in colorectal carcinoma. The mediators leading to sensitization remain unknown. Defining the specific factors associated with radiation sensitization after genomic demethylation may open the way to better targeting for the purpose of radiation sensitization.
Resumo:
A new analytical approach for measuring methane in tissues is presented. For the first time, the use of in situ-produced, stably labelled CDH(3) provides a reliable and precise methane quantification. This method was applied to postmortem samples obtained from two victims to help determine the explosion origin. There was evidence of methane in the adipose tissue (82 nmol/g) and cardiac blood (1.3 nmol/g) of one victim, which corresponded to a lethal methane outburst. These results are discussed in the context of the available literature to define an analysis protocol for application in the event of a gas explosion.
Resumo:
A powder prepared by Haitian voodoo sorcerers for the making of zombis was extracted with acetic acid, the extract concentrated and applied to a small cation exchange column followed by elution with water and then acetic acid. The water and acetic acid eluents were analysed by gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry. The analyses indicated the presence of an alkaline degradation product of tetrodotoxin, namely 2-amino-6-hydroxymethyl-8-hydroxyquinazoline, after base treatment, and of tetrodotoxin and an isomer on direct thermospray mass spectral activity.
Resumo:
Combined radiation and hormone therapies have become common clinical practice in recent years for locally-advanced prostate cancers. The use of such concomitant therapy in the treatment of breast disease has been infrequently reported in the literature, but seems justified given the common hormonal dependence of breast cancer and the potential synergistic effect of these two treatment modalities. As adjuvant therapy, two strategies are used in daily clinical practice: upfront aromatase inhibitors or sequentially after a variable delay of tamoxifen. These molecules may, thus, interact with radiotherapy. Retrospectives studies recently published did not show any differences in terms of locoregional recurrences between concurrent or sequential radiohormonotherapy. Lung and skin fibroses due to concurrent treatment are still under debate. Nevertheless, late side effects appeared to be increased by such a treatment, particularly in hypersensitive patients identified at risk by the lymphocyte predictive test. Concurrent radiohormonotherapy should, thus, be delivered cautiously at least for these patients. This article details the potent advantages and risks of concurrent use of adjuvant hormonotherapy and radiotherapy in localized breast cancers.
Resumo:
Ultrafractionation of radiation therapy is a novel regimen consisting of irradiating tumors several times daily, delivering low doses (<0.75 Gy) at which hyperradiosensitivity occurs. We recently demonstrated the high efficiency of ultrafractionated radiotherapy (RT) on glioma xenografts and report here on a phase II clinical trial to determine the safety, tolerability, and efficacy of an ultrafractionation regimen in patients with newly and inoperable glioblastoma (GBM). Thirty-one patients with histologically proven, newly diagnosed, and unresectable supratentorial GBM (WHO grade IV) were enrolled. Three daily doses of 0.75 Gy were delivered at least 4 hours apart, 5 days per week over 6-7 consecutive weeks (90 fractions for a total of 67.5 Gy). Conformal irradiation included the tumor bulk with a margin of 2.5 cm. The primary end points were safety, toxicity, and tolerability, and the secondary end points were overall survival (OS) and progression-free survival (PFS). Multivariate analysis was used to compare the OS and PFS with the EORTC-NCIC trial 26981-22981/CE.3 of RT alone vs radiation therapy and temozolomide (TMZ). The ultrafractionation radiation regimen was safe and well tolerated. No acute Grade III and/or IV CNS toxicity was observed. Median PFS and OS from initial diagnosis were 5.1 and 9.5 months, respectively. When comparing with the EORTC/NCIC trial, in both PFS and OS multivariate analysis, ultrafractionation showed superiority over RT alone, but not over RT and TMZ. The ultrafractionation regimen is safe and may prolong the survival of patients with GBM. Further investigation is warranted and a trial associating ultra-fractionation and TMZ is ongoing.
Resumo:
[Traditions. Europe. Roumanie]
Resumo:
AimThe study of adaptive radiations provides an evolutionary perspective on the interactions between organisms and their environment, and is necessary to understand global biodiversity. Adaptive radiations can sometimes be replicated over several disjunct geographical entities, but most examples are found on island or in lakes. Here, we investigated the biogeographical history of the clownfishes, a clade of coral reef fish with ranges that now span most of the Indo-Pacific Ocean, in order to explore the geographical structure of an unusual adaptive radiation. LocationIndian Ocean, Indo-Australian Archipelago (IAA) and Central Pacific Ocean. MethodsWe generated DNA sequence data comprising seven nuclear markers for 27 of the 30 clownfish species. We then inferred a Bayesian phylogeny and reconstructed the biogeographical history of the group using three different methods. Finally, we applied a biogeographical model of diversification to assess whether diversification patterns differ between the Indian and Pacific Oceans. ResultsThe phylogenetic tree is highly supported and allows reconstruction of the biogeographical history of the clade. While most species arose in the IAA, one clade colonized the eastern shores of Africa and diversified there. We found that the diversification rate of clownfishes does not differ between the main radiation and the African clade. Main conclusionsThe clownfishes first appeared and diversified in the IAA. Following a colonization event, a geographically independent radiation occurred in the Indian Ocean off East Africa. This rare example of replicated adaptive radiation in the marine realm provides intriguing possibilities for further research on ecological speciation in the sea.