910 resultados para forecasts
Resumo:
This project addresses the potential impacts of changing climate on dry-season water storage and discharge from a small, mountain catchment in Tanzania. Villagers and water managers around the catchment have experienced worsening water scarcity and attribute it to increasing population and demand, but very little has been done to understand the physical characteristics and hydrological behavior of the spring catchment. The physical nature of the aquifer was characterized and water balance models were calibrated to discharge observations so as to be able to explore relative changes in aquifer storage resulting from climate changes. To characterize the shallow aquifer supplying water to the Jandu spring, water quality and geochemistry data were analyzed, discharge recession analysis was performed, and two water balance models were developed and tested. Jandu geochemistry suggests a shallow, meteorically-recharged aquifer system with short circulation times. Baseflow recession analysis showed that the catchment behavior could be represented by a linear storage model with an average recession constant of 0.151/month from 2004-2010. Two modified Thornthwaite-Mather Water Balance (TMWB) models were calibrated using historic rainfall and discharge data and shown to reproduce dry-season flows with Nash-Sutcliffe efficiencies between 0.86 and 0.91. The modified TMWB models were then used to examine the impacts of nineteen, perturbed climate scenarios to test the potential impacts of regional climate change on catchment storage during the dry season. Forcing the models with realistic scenarios for average monthly temperature, annual precipitation, and seasonal rainfall distribution demonstrated that even small climate changes might adversely impact aquifer storage conditions at the onset of the dry season. The scale of the change was dependent on the direction (increasing vs. decreasing) and magnitude of climate change (temperature and precipitation). This study demonstrates that small, mountain aquifer characterization is possible using simple water quality parameters, recession analysis can be integrated into modeling aquifer storage parameters, and water balance models can accurately reproduce dry-season discharges and might be useful tools to assess climate change impacts. However, uncertainty in current climate projections and lack of data for testing the predictive capabilities of the model beyond the present data set, make the forecasts of changes in discharge also uncertain. The hydrologic tools used herein offer promise for future research in understanding small, shallow, mountainous aquifers and could potentially be developed and used by water resource professionals to assess climatic influences on local hydrologic systems.
Resumo:
Famines are often linked to drought in semi-arid areas of Sub-Saharan Africa where not only pastoralists, but also increasingly agro-pastoralists are affected. This study addresses the interplay between drought and famine in the rural semi-arid areas of Makueni district, Kenya, by examining whether, and how crop production conditions and agro-pastoral strategies predispose smallholder households to drought-triggered food insecurity. If this hypothesis holds, then approaches to deal with drought and famine have to target factors causing household food insecurity during non-drought periods. Data from a longitudinal survey of 127 households, interviews, workshops, and daily rainfall records (1961–2003) were analysed using quantitative and qualitative methods. This integrated approach confirms the above hypothesis and reveals that factors other than rainfall, like asset and labour constraints, inadequate policy enforcement, as well as the poverty-driven inability to adopt risk-averse production systems play a key role. When linking these factors to the high rainfall variability, farmer-relevant definitions and forecasts of drought have to be applied.
Resumo:
This paper assesses the influence of an adoption of IAS/IFRS or US GAAP on the financial analysts’ forecast accuracy in a homogenous institutional framework. Our findings suggest that the forecast accuracy is higher for estimates based on IFRS or US GAAP data than for forecasts based on German GAAP data.Moreover, in the year of switching from German GAAP to US GAAP the forecast accuracy is lower than in other years. The paper contributes to prior research by providing evidence about the usefulness of international accounting data and about the adoption effects of a change to such accounting principles.
Resumo:
The Rosetta spacecraft will arrive at comet 67P/Churyumov–Gerasimenko in 2014 and will escort the comet along its journey around the Sun. The predicted outgassing rate of the comet and the solar wind properties close to its perihelion at 1.24 AU lead to the expectation that a cometary bow shock will form during the escort phase. Since the forecasts of the subsolar stand off distances differ, this study revisits selected models and presents hybrid simulations of the comet–solar wind interaction region performed with the A.I.K.E.F. code. It is shown that small variations of the solar wind parameters will shift the bow shock position considerably. In addition, a model is presented that reproduces the bow shock distances observed in the hybrid simulations.
Resumo:
The variability of results from different automated methods of detection and tracking of extratropical cyclones is assessed in order to identify uncertainties related to the choice of method. Fifteen international teams applied their own algorithms to the same dataset - the period 1989-2009 of interim European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERAInterim) data. This experiment is part of the community project Intercomparison of Mid Latitude Storm Diagnostics (IMILAST; see www.proclim.ch/imilast/index.html). The spread of results for cyclone frequency, intensity, life cycle, and track location is presented to illustrate the impact of using different methods. Globally, methods agree well for geographical distribution in large oceanic regions, interannual variability of cyclone numbers, geographical patterns of strong trends, and distribution shape for many life cycle characteristics. In contrast, the largest disparities exist for the total numbers of cyclones, the detection of weak cyclones, and distribution in some densely populated regions. Consistency between methods is better for strong cyclones than for shallow ones. Two case studies of relatively large, intense cyclones reveal that the identification of the most intense part of the life cycle of these events is robust between methods, but considerable differences exist during the development and the dissolution phases.
Resumo:
Here we present new isotope records derived from snow samples from the McMurdo Dry Valleys, Antarctica and re-analysis data of the European Centre for Medium-Range Weather Forecasts (ERA-40) to explain the connection between the warming of the Pacific sector of the Southern Ocean [Jacka and Budd, 1998; Jacobs et al., 2002] and the current cooling of the terrestrial Ross Sea region [Doran et al., 2002a]. Our analysis confirms previous findings that the warming is linked to the El Nino Southern Oscillation (ENSO) [Kwok and Comiso, 2002a, 2002b; Carleton, 2003; Ribera and Mann, 2003; Turner, 2004], and provides new evidence that the terrestrial cooling is caused by a simultaneous ENSO driven change in atmospheric circulation, sourced in the Amundsen Sea and West Antarctica.
Resumo:
Ocean observing systems and satellites routinely collect a wealth of information on physical conditions in the ocean. With few exceptions, such as chlorophyll concentrations, information on biological properties is harder to measure autonomously. Here, we present a system to produce estimates of the distribution and abundance of the copepod Calanus finmarchicus in the Gulf of Maine. Our system uses satellite-based measurements of sea surface temperature and chlorophyll concentration to determine the developmental and reproductive rates of C. finmarchicus. The rate information then drives a population dynamics model of C. finmarchicus that is embedded in a 2-dimensional circulation field. The first generation of this system produces realistic information on interannual variability in C. finmarchicus distribution and abundance during the winter and spring. The model can also be used to identify key drivers of interannual variability in C. finmarchicus. Experiments with the model suggest that changes in initial conditions are overwhelmed by variability in growth rates after approximately 50 d. Temperature has the largest effect on growth rate. Elevated chlorophyll during the late winter can lead to increased C. finmarchicus abundance during the spring, but the effect of variations in chlorophyll concentrations is secondary to the other inputs. Our system could be used to provide real-time estimates or even forecasts of C. finmarchicus distribution. These estimates could then be used to support management of copepod predators such as herring and right whales.
Resumo:
This study presents a 5-yr climatology of 7-day back trajectories started from the Northern Hemisphere subtropical jet. These trajectories provide insight into the seasonally and regionally varying angular momentum and potential vorticity characteristics of the air parcels that end up in the subtropical jet. The trajectories reveal preferred pathways of the air parcels that reach the subtropical jet from the tropics and the extratropics and allow estimation of the tropical and extratropical forcing of the subtropical jet. The back trajectories were calculated 7 days back in time and started every 6 h from December 2005 to November 2010 using the Interim European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-Interim) dataset as a basis. The trajectories were started from the 345-K isentrope in areas where the wind speed exceeded a seasonally varying threshold and where the wind shear was confined to upper levels. During winter, the South American continent, the Indian Ocean, and the Maritime Continent are preferred areas of ascent into the upper troposphere. From these areas, air parcels follow an anticyclonic pathway into the subtropical jet. During summer, the majority of air parcels ascend over the Himalayas and Southeast Asia. Angular momentum is overall well conserved for trajectories that reach the subtropical jet from the deep tropics. In winter and spring, the hemispheric-mean angular momentum loss amounts to approximately 6%; in summer, it amounts to approximately 18%; and in fall, it amounts to approximately 13%. This seasonal variability is confirmed using an independent potential vorticity–based method to estimate tropical and extratropical forcing of the subtropical jet.
Resumo:
Many observed time series of the global radiosonde or PILOT networks exist as fragments distributed over different archives. Identifying and merging these fragments can enhance their value for studies on the three-dimensional spatial structure of climate change. The Comprehensive Historical Upper-Air Network (CHUAN version 1.7), which was substantially extended in 2013, and the Integrated Global Radiosonde Archive (IGRA) are the most important collections of upper-air measurements taken before 1958. CHUAN (tracked) balloon data start in 1900, with higher numbers from the late 1920s onward, whereas IGRA data start in 1937. However, a substantial fraction of those measurements have not been taken at synoptic times (preferably 00:00 or 12:00 GMT) and on altitude levels instead of standard pressure levels. To make them comparable with more recent data, the records have been brought to synoptic times and standard pressure levels using state-of-the-art interpolation techniques, employing geopotential information from the National Oceanic and Atmospheric Administration (NOAA) 20th Century Reanalysis (NOAA 20CR). From 1958 onward the European Re-Analysis archives (ERA-40 and ERA-Interim) available at the European Centre for Medium-Range Weather Forecasts (ECMWF) are the main data sources. These are easier to use, but pilot data still have to be interpolated to standard pressure levels. Fractions of the same records distributed over different archives have been merged, if necessary, taking care that the data remain traceable back to their original sources. If possible, station IDs assigned by the World Meteorological Organization (WMO) have been allocated to the station records. For some records which have never been identified by a WMO ID, a local ID above 100 000 has been assigned. The merged data set contains 37 wind records longer than 70 years and 139 temperature records longer than 60 years. It can be seen as a useful basis for further data processing steps, most notably homogenization and gridding, after which it should be a valuable resource for climatological studies. Homogeneity adjustments for wind using the NOAA-20CR as a reference are described in Ramella Pralungo and Haimberger (2014). Reliable homogeneity adjustments for temperature beyond 1958 using a surface-data-only reanalysis such as NOAA-20CR as a reference have yet to be created. All the archives and metadata files are available in ASCII and netCDF format in the PANGAEA archive
Resumo:
The co-occurrence of warm conveyor belts (WCBs), strongly ascending moist airstreams in extratropical cyclones, and stratospheric potential vorticity (PV) streamers, indicators for breaking Rossby waves on the tropopause, is investigated for a 21-yr period in the Northern Hemisphere using Interim European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-Interim) data. WCB outflows and PV streamers are respectively identified as two- and three-dimensional objects and tracked during their life cycle. PV streamers are more frequent than WCB outflows and nearly 15% of all PV streamers co-occur with WCBs during their life cycle, whereas about 60% of all WCB outflows co-occur with PV streamers. Co-occurrences are most frequent over the North Atlantic and North Pacific in spring and winter. WCB outflows are often located upstream of the PV streamers and form earlier, indicating the importance of diabatic processes for downstream Rossby wave breaking. Less frequently, PV streamers occur first, leading to the formation of new WCBs.
Resumo:
We propose notions of calibration for probabilistic forecasts of general multivariate quantities. Probabilistic copula calibration is a natural analogue of probabilistic calibration in the univariate setting. It can be assessed empirically by checking for the uniformity of the copula probability integral transform (CopPIT), which is invariant under coordinate permutations and coordinatewise strictly monotone transformations of the predictive distribution and the outcome. The CopPIT histogram can be interpreted as a generalization and variant of the multivariate rank histogram, which has been used to check the calibration of ensemble forecasts. Climatological copula calibration is an analogue of marginal calibration in the univariate setting. Methods and tools are illustrated in a simulation study and applied to compare raw numerical model and statistically postprocessed ensemble forecasts of bivariate wind vectors.
Resumo:
Land-atmosphere coupling and its impact on extreme precipitation and temperature events over North America are studied using the fifth generation of the Canadian Regional Climate Model (CRCM5). To this effect, two 30 year long simulations, spanning the 1981–2010 period, with and without land-atmosphere coupling, have been performed with CRCM5, driven by the European Centre for Medium-Range Weather Forecasts reanalysis at the boundaries. In the coupled simulation, the soil moisture interacts freely with the atmosphere at each time step, while in the uncoupled simulation, soil moisture is replaced with its climatological value computed from the coupled simulation, thus suppressing the soil moisture-atmosphere interactions. Analyses of the coupled and uncoupled simulations, for the summer period, show strong soil moisture-temperature coupling over the Great Plains, consistent with previous studies. The maxima of soil moisture-precipitation coupling is more spread out and covers the semiarid regions of the western U.S. and parts of the Great Plains. However, the strength of soil moisture-precipitation coupling is found to be generally weaker than that of soil moisture-temperature coupling. The study clearly indicates that land-atmosphere coupling increases the interannual variability of the seasonal mean daily maximum temperature in the Great Plains. Land-atmosphere coupling is found to significantly modulate selected temperature extremes such as the number of hot days, frequency, and maximum duration of hot spells over the Great Plains. Results also suggest additional hot spots, where soil moisture modulates extreme events. These hot spots are located in the southeast U.S. for the hot days/hot spells and in the semiarid regions of the western U.S. for extreme wet spells. This study thus demonstrates that climatologically wet/dry regions can become hot spots of land-atmosphere coupling when the soil moisture decreases/increases to an intermediate transitional level where evapotranspiration becomes moisture sensitive and large enough to affect the climate.
Resumo:
Lake water temperature (LWT) is an important driver of lake ecosystems and it has been identified as an indicator of climate change. Consequently, the Global Climate Observing System (GCOS) lists LWT as an essential climate variable. Although for some European lakes long in situ time series of LWT do exist, many lakes are not observed or only on a non-regular basis making these observations insufficient for climate monitoring. Satellite data can provide the information needed. However, only few satellite sensors offer the possibility to analyse time series which cover 25 years or more. The Advanced Very High Resolution Radiometer (AVHRR) is among these and has been flown as a heritage instrument for almost 35 years. It will be carried on for at least ten more years, offering a unique opportunity for satellite-based climate studies. Herein we present a satellite-based lake surface water temperature (LSWT) data set for European water bodies in or near the Alps based on the extensive AVHRR 1 km data record (1989–2013) of the Remote Sensing Research Group at the University of Bern. It has been compiled out of AVHRR/2 (NOAA-07, -09, -11, -14) and AVHRR/3 (NOAA-16, -17, -18, -19 and MetOp-A) data. The high accuracy needed for climate related studies requires careful pre-processing and consideration of the atmospheric state. The LSWT retrieval is based on a simulation-based scheme making use of the Radiative Transfer for TOVS (RTTOV) Version 10 together with ERA-interim reanalysis data from the European Centre for Medium-range Weather Forecasts. The resulting LSWTs were extensively compared with in situ measurements from lakes with various sizes between 14 and 580 km2 and the resulting biases and RMSEs were found to be within the range of −0.5 to 0.6 K and 1.0 to 1.6 K, respectively. The upper limits of the reported errors could be rather attributed to uncertainties in the data comparison between in situ and satellite observations than inaccuracies of the satellite retrieval. An inter-comparison with the standard Moderate-resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature product exhibits RMSEs and biases in the range of 0.6 to 0.9 and −0.5 to 0.2 K, respectively. The cross-platform consistency of the retrieval was found to be within ~ 0.3 K. For one lake, the satellite-derived trend was compared with the trend of in situ measurements and both were found to be similar. Thus, orbital drift is not causing artificial temperature trends in the data set. A comparison with LSWT derived through global sea surface temperature (SST) algorithms shows lower RMSEs and biases for the simulation-based approach. A running project will apply the developed method to retrieve LSWT for all of Europe to derive the climate signal of the last 30 years. The data are available at doi:10.1594/PANGAEA.831007.
Resumo:
Development of irrigation, which is of crucial importance in Eritrea, is perceived by many as the main technique for improving the precarious food security situation in this Sahelian country in the Horn of Africa. The present publication presents the outcome of a nationwide workshop held in 2003, which brought together administrators, scientists, and members of public development agencies and NGOs. These workshop participants presented experiences, lessons learnt, and ideas about how to move forward in relation to development of irrigation in Eritrea. Specifically, the publication deals with the following broad themes, lessons learnt, and experiences in Eritrea: · spate irrigation systems and measurement of performance, as well as experience with modernisation of spate irrigation systems in Eritrea · small-scale irrigation systems and their potentials and pitfalls, including development of low-cost micro irrigation · climate and irrigation, including rainfall forecasts · socio-economic aspects of irrigation, including gender questions, institutional requirements, and irrigation and livelihoods The publication contains an extensive summary in the Tigrinya language, in order to facilitate access to the key findings by local non-English-speaking stakeholders in irrigation development.
Resumo:
Alpine heavy precipitation events often affect small catchments, although the circulation pattern leading to the event extends over the entire North Atlantic. The various scale interactions involved are particularly challenging for the numerical weather prediction of such events. Unlike previous studies focusing on the southern Alps, here a comprehensive study of a heavy precipitation event in the northern Alps in October 2011 is presented with particular focus on the role of the large-scale circulation in the North Atlantic/European region. During the event exceptionally high amounts of total precipitable water occurred in and north of the Alps. This moisture was initially transported along the flanks of a blocking ridge over the North Atlantic. Subsequently, strong and persistent northerly flow established at the upstream flank of a trough over Europe and steered the moisture towards the northern Alps. Lagrangian diagnostics reveal that a large fraction of the moisture emerged from the West African coast where a subtropical upper-level cut-off low served as an important moisture collector. Wave activity flux diagnostics show that the ridge was initiated as part of a low-frequency, large-scale Rossby wave train while convergence of fast transients helped to amplify it locally in the North Atlantic. A novel diagnostic for advective potential vorticity tendencies sheds more light on this amplification and further emphasizes the role of the ridge in amplifying the trough over Europe. Operational forecasts misrepresented the amplitude and orientation of this trough. For the first time, this study documents an important pathway for northern Alpine flooding, in which the interaction of synoptic-scale to large-scale weather systems and of long-range moisture transport from the Tropics are dominant. Moreover, the trapping of moisture in a subtropical cut-off near the West African coast is found to be a crucial precursor to the observed European high-impact weather.