972 resultados para first order condition
Resumo:
Extraction and interfacial kinetics of Nd3+ and Sm3+ with HER/EHP-kerosene in a hollow fiber membrane extractor were studied. The results show that the extraction reactions in the hollow fiber membrane extractor are the same as those in the liquid-liquid extraction, which can be expressed as a quasi-first-order reaction. The effect of acidity in aqueous phase, concentrations of extractant, Nd3+ and Sm3+ on extraction rate were discussed and the corresponding reaction series were obtained. The reaction equations, reaction rate constants and the separation constant were obtained.
Resumo:
Studies of the extraction kinetics of cerium(IV) from H2SO4-HF solutions with Cyanex 923 in n-heptane have been carried out using a constant interfacial area cell with laminar flow. The experimental hydrodynamic conditions were chosen so that the contribution of diffusion to the measured rate of reaction was minimized. The data were analyzed in terms of pseudo-first order constants. The results were compared with those of the system without HF. It was concluded that the addition of HF reduces the activation energy for the forward rate from 46.2 to 36.5 U mol(-1) while it has an opposite effect on the activation energy for the reverse process(the activation energy increased from 23.3 to 90.8 U mol(-1)). Thus, HF can accelerate the rate of cerium(IV) extraction. At the same time, the extraction rate is controlled by a mixed chemical reaction-diffusion rather than by a chemical reaction alone. A rate equation has also been obtained.
Resumo:
The phase transition behavior of a thermotropic liquid crystalline poly(aryl ether ketone) synthesized by nucleophilic substitution reactions of 4,4'-biphenol (BP), and chlorohydroquinone (CH) with 1,4-bis(4-fluorobenzoyl)benzene (BF) has been investigated by differential scanning calorimetry (DSC) and wide angle X-ray diffraction (WAXD). The copolymer exhibits multiple first order phase transitions, which are associated with crystal-to-smectic liquid crystal transition and smectic liquid crystal-to-isotropic transition. When the cooling rate is low (<10
Resumo:
Ce4+ extraction rate from aqueous sulphate solutions by Cyanex923 in heptane was studied using a constant interfacial cell with laminar flow at 30 degreesC. The experimental hydrodynamic conditions were chosen and the contribution of diffusion to the measured rate of reaction was minimized. Cerium extraction rate was measured at different chemical composition by varying the concentrations of hydrogen ion, sulphate and Cyanex923. A cerium-Cyanex923(B) extractive is formed at the interface. The data were analyszed in terms of pseudo-first order constants and a reaction mechanism was developed.
Resumo:
The variation of lattice spacings of poly(iminosebacoyl iminodecamethylene) (nylon-10,10) with temperature was studied by wide-angle X-ray diffraction (WAXD) during both heating and cooling processes, which demonstrates a gradual and continuous transition with temperature. However, the crystal melts before the two peaks merge completely. Both WAXD and differential scanning calorimetry show that crystallization from molten sample results directly in the triclinic form. Additionally, this transition is thermodynamically reversible. Comparison of this transition with that of nylon-6,6, suggests that no hydrogen-bonded network is formed during or after the transition. We prefer to attribute this transition to asymmetrical thermal expansion in the nylon-10,10 crystals rather than to a true first-order phase transition. (C) 2001 Society of Chemical Industry.
Resumo:
Stereospecific polymerization of styrene was catalyzed by homogeneous neodymium phosphonate [Nd(P-507)(3)]-H2O-Al(i-Bu)(3) catalytic system. The polymer was separated into isotactic polystyrene and atactic polystyrene by extracting the latter with boiling 2-butanone. The conversion of styrene and the yield of isotactic polystyrene (IY) were influenced by the [H2O]/[Al(i-Bu)(3)] mole ratio and the solvent polarity. The reaction is first order with respect to monomer at 70 degrees C.
Resumo:
Oxidative dehydroaromatization of propylene was investigated by the pulse technique over two kinds of single oxide catalysts. With the Bi2O3 catalyst, the main dimer product was 1,5-hexadiene, and the dimerization activity was stable to pulse number even if the catalyst was partly reduced to the bulk. With the CeO2 catalyst, benzene was mainly formed instead of 1,5-hexadiene, but the activity decreased rapidly with increasing pulse number, indicating that only the lattice oxygen near the catalyst surface could be used for oxidative dimerization and the further aromatization. The Bi-Ce-O system catalyst was found in this study to give higher aromatization activity and showed better stability, compared to the Bi-Sn-O catalyst. Although the Bi-Ce-O catalyst was only a mixture of the two component oxides from X-ray diffraction analysis, there was a significant combination effect on the selectivity to benzene. The highest and the most stable selectivity of benzene was obtained at Bi/Ce = 1. In the TPD spectrum of Bi-Ce-O catalyst, there are not only the lattice oxygen (beta-oxygen) over 620-degrees-C due to the reduction of Bi2O3, but also a great deal of the alpha-oxygen desorbed about 400-degrees-C, which is considered the absorbed oxygen in the bulk. This absorbed oxygen could probably be a compensation of the lattice oxygen through the route of gaseous --> absorbed --> lattice oxygen in the binary catalyst system. By the kinetic study on the Bi-Ce-O catalyst, the dimer formation rate was the first-order with respect to the partial pressure of propylene and zero-order of oxygen. Although detail investigation would be made further, it was considered that the complete oxidation of propylene would mainly take place parallelly on some different sites, and the rate-determining step of propylene dimerization occurred probably between an adosrbed propylene and a gaseous one by an Eley-Rideal type mechanism.
Resumo:
The at constants of catalytic reaction of ferrocyanide ascorbic acid and ferro cyanide histidine system were determined by transmitted spectroelectrochemistry using a group of cyclindrical microelectrodes, It is the first time to find that the reaction can still be considered as the pseudo first order reaction when tilt concentration of ascorbic acid or histidine is close to and even slightly lower than the concentration of ferrocyanide. The determined rate constants are in agreement with the reported values, A reasonable explanation was given,
Resumo:
Transmittance spectroelectrochemistry can be performed using a group of cylindrical microelectrodes. A dependence of absorbance on electrolytic charge during the potential step was derived. The rate constant of catalytic reaction of the ferrocyanide-ascorbic acid system was determined using single potential step-open circuit relaxation chronoabsorptometry. This is the first report that the reaction can still be considered as a pseudo-first-order reaction when the concentration of ascorbic acid is close to and even slightly lower than the concentration of ferrocyanide. The determined rate constant is in agreement with the reported value. The reason is that the diffusion of ascorbic acid toward electrode surface is contractive and the diffusion of the electrogenerated ferricyanide from the electrode surface to the bulk of solution is expansive.
Resumo:
In this paper, we present an exact solution for nonlinear shallow water on a rotating planet. It is a kind of solitary waves with always negative wave height and a celerity smaller than linear shallow water propagation speed square-root gh. In fact, it propagates with a speed equal to (1 + a/h) square-root gh(1 + a/h) where a is the negative wave height. The lowest point of the water surface is a singular point where the first order derivative has a discontinuity of the first kind. The horizontal scale of the wave has actually no connection with the water depth.
Resumo:
Large amplitude internal solitary waves (ISWs) often exhibit highly nonlinear effects and may contribute significantly to mixing and energy transporting in the ocean. We observed highly nonlinear ISWs over the continental shelf of the northwestern South China Sea (19A degrees 35'N, 112A degrees E) in May 2005 during the Wenchang Internal Wave Experiment using in-situ time series data from an array of temperature and salinity sensors, and an acoustic Doppler current profiler (ADCP). We summarized the characteristics of the ISWs and compared them with those of existing internal wave theories. Particular attention has been paid to characterizing solitons in terms of the relationship between shape and amplitude-width. Comparison between theoretical prediction and observation results shows that the high nonlinearity of these waves is better represented by the second-order extended Korteweg-de Vries (KdV) theory than the first-order KdV model. These results indicate that the northwestern South China Sea (SCS) is rich in highly nonlinear ISWs that are an indispensable part of the energy budget of the internal waves in the northern South China Sea.
Resumo:
The dye C.I. Acid Blue 80 (AB80) was easily degraded by TiO2-P25 assisted photocatalysis in aqueous dispersion under irradiation of sunlight. The optimal reaction conditions were [TiO2] = 2.0 g/L, pH = 10, [H2O2] = 5 mmol/L. The photocatalytic reaction followed pseudo-first order kinetics. The adsorption of AB80 onto TiO2 was in accord with Langmuir equation.
Resumo:
提出一种以顶点的一邻域中三角形在该顶点处的顶角与对应三角形的面积比值加权三角面法矢量估计二维流形三角网格模型顶点法矢量的方法.回顾了现有的五种顶点法矢量估计方法,然后给出了新的方法.设计了利用理论法矢量与估计法矢量的夹角作为误差评价标准的实验,应用球体和椭球体模型分析了所涉及的6种估计方法的性能。
Resumo:
Elastic anisotropy is a very common phenomenon in the Earth’s interior, especial for sedimentary rock as important gas and oil reservoirs. But in the processing and interpretation of seismic data, it is assumption that the media in the Earth’s interior is completely elastic and isotropic, and then the methods based on isotropy are used to deal with anisotropic seismic data, so it makes the seismic resolution lower and the error on images is caused. The research on seismic wave simulation technology can improve our understanding on the rules of seismic wave propagation in anisotropic media, and it can help us to resolve problems caused by anisotropy of media in the processing and interpretation of seismic data. So researching on weakly anisotropic media with rotated axis of symmetry, we study systematically the rules of seismic wave propagation in this kind of media, simulate the process with numerical calculation, and get the better research results. The first-order ray tracing (FORT) formulas of qP wave derived can adapt to every anisotropic media with arbitrary symmetry. The equations are considerably simpler than the exact ray tracing equations. The equations allow qP waves to be treated independently from qS waves, just as in isotropic media. They simplify considerably in media with higher symmetry anisotropy. In isotropic media, they reduce to the exact ray tracing equations. In contrast to other perturbation techniques used to trace rays in weakly anisotropic media, our approach does not require calculation of reference rays in a reference isotropic medium. The FORT-method rays are obtained directly. They are computationally more effective than standard ray tracing equations. Moreover the second-order travel time corrections formula derived can be used to reduce effectively the travel time error, and improve the accuracy of travel time calculation. The tensor transformation equations of weak-anisotropy parameters in media with rotated axis of symmetry derived from the Bond transformation equations resolve effectively the problems of coordinate transformation caused by the difference between global system of coordinate and local system of coordinate. The calculated weak-anisotropy parameters are completely suitable to the first-order ray tracing used in this paper, and their forms are simpler than those from the Bond transformation. In the numerical simulation on ray tracing, we use the travel time table calculation method that the locations of the grids in the ray beam are determined, then the travel times of the grids are obtained by the reversed distance interpolation. We get better calculation efficiency and accuracy by this method. Finally we verify the validity and adaptability of this method used in this paper with numerical simulations for the rotated TI model with anisotropy of about 8% and the rotated ORTHO model with anisotropy of about 20%. The results indicate that this method has better accuracy for both media with different types and different anisotropic strength. Keywords: weak-anisotropy, numerical simulation, ray tracing equation, travel time, inhomogeneity
Resumo:
To improve the efficiency of boundary-volume integral equation technique, this paper is involved in the approximate solutions of boundary-volume integral equation technique. Firstly, based on different interpretations of the self-interaction and extrapolation operators of the resulting boundary integral equation matrix, two different hybrid BEM+Born series modeling schemes are formulated and validated through comparisons with the full-waveform BE numerical solutions for wave propagation simulation in a semicircular alluvial valley and a complex fault model respectively. Numerical experiments indicate that both the BEM+Born series modeling schemes are suitable for complex geological structures and significantly improve computational efficiency especially for the cases of high frequencies and multisource seismic survey. Then boundary-volume integral equation technique is illuminated in detail and verified by modeling wave propagation in complex media. Furthermore, the first-order and second-order Born approximate solutions for the volume-scattering waves are studied and quantified by numerical simulation in different random medium models. Finally, preconditioning generalized minimal residual method is applied to solve boundary-volume integral equation and compared with Gaussian elimination method. Numerical experiments indicate this method makes the calculations more efficient.