934 resultados para finite difference time domain (FDTD) method


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A methodology termed the “filtered density function” (FDF) is developed and implemented for large eddy simulation (LES) of chemically reacting turbulent flows. In this methodology, the effects of the unresolved scalar fluctuations are taken into account by considering the probability density function (PDF) of subgrid scale (SGS) scalar quantities. A transport equation is derived for the FDF in which the effect of chemical reactions appears in a closed form. The influences of scalar mixing and convection within the subgrid are modeled. The FDF transport equation is solved numerically via a Lagrangian Monte Carlo scheme in which the solutions of the equivalent stochastic differential equations (SDEs) are obtained. These solutions preserve the Itô-Gikhman nature of the SDEs. The consistency of the FDF approach, the convergence of its Monte Carlo solution and the performance of the closures employed in the FDF transport equation are assessed by comparisons with results obtained by direct numerical simulation (DNS) and by conventional LES procedures in which the first two SGS scalar moments are obtained by a finite difference method (LES-FD). These comparative assessments are conducted by implementations of all three schemes (FDF, DNS and LES-FD) in a temporally developing mixing layer and a spatially developing planar jet under both non-reacting and reacting conditions. In non-reacting flows, the Monte Carlo solution of the FDF yields results similar to those via LES-FD. The advantage of the FDF is demonstrated by its use in reacting flows. In the absence of a closure for the SGS scalar fluctuations, the LES-FD results are significantly different from those based on DNS. The FDF results show a much closer agreement with filtered DNS results. © 1998 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of reaction mechanisms involves systematic investigations of the correlation between structure, reactivity, and time. The challenge is to be able to observe the chemical changes undergone by reactants as they change into products via one or several intermediates such as electronic excited states (singlet and triplet), radicals, radical ions, carbocations, carbanions, carbenes, nitrenes, nitrinium ions, etc. The vast array of intermediates and timescales means there is no single ``do-it-all'' technique. The simultaneous advances in contemporary time-resolved Raman spectroscopic techniques and computational methods have done much towards visualizing molecular fingerprint snapshots of the reactive intermediates in the microsecond to femtosecond time domain. Raman spectroscopy and its sensitive counterpart resonance Raman spectroscopy have been well proven as means for determining molecular structure, chemical bonding, reactivity, and dynamics of short-lived intermediates in solution phase and are advantageous in comparison to commonly used time-resolved absorption and emission spectroscopy. Today time-resolved Raman spectroscopy is a mature technique; its development owes much to the advent of pulsed tunable lasers, highly efficient spectrometers, and high speed, highly sensitive multichannel detectors able to collect a complete spectrum. This review article will provide a brief chronological development of the experimental setup and demonstrate how experimentalists have conquered numerous challenges to obtain background-free (removing fluorescence), intense, and highly spectrally resolved Raman spectra in the nanosecond to microsecond (ns-mu s) and picosecond (ps) time domains and, perhaps surprisingly, laid the foundations for new techniques such as spatially offset Raman spectroscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The contemporary methods for source characterization rely mainly on experiments. These methods produce inaccurate results in the low‐frequency band, where the characteristics are all the more important. Moreover, the experimental methods cannot be used at the design stage. Hence, a numerical technique to obtain the source characteristics is desirable. In this paper, the pressure‐time history and the mass‐flux‐time history obtained by means of the timedomain analysis have been used, along with the two‐load method to compute the source characteristics. Two new computational methods for obtaining the source characteristics have been described. These are much simpler, and computationally more economical than the complete timedomain simulation, which makes use of the method of characteristics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

He propose a new time domain method for efficient representation of the KCG and delineation of its component waves. The method is based on the multipulse Linear prediction (LP) coding which is being widely used in speech processing. The excitation to the LP synthesis filter consists of a few pulses defined by their locations and amplitudes. Based on the amplitudes and their distribution, the pulses are suitably combined to delineate the component waves. Beat to beat correlation in the ECG signal is used in QRS periodicity prediction. The method entails a data compression of 1 in 6. The method reconstructs the signal with an NMSE of less than 5%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A two-dimensional finite difference model, which solves mixed type of Richards' equation, whose non-linearity is dealt with modified Picard's iteration and strongly implicit procedure to solve the resulting equations, is presented. Modeling of seepage flow through heterogeneous soils, which is common in the field is addressed in the present study. The present model can be applied to both unsaturated and saturated soils and can handle very dry initial condition and steep wetting fronts. The model is validated by comparing experimental results reported in the literature. Newness of this two dimensional model is its application on layered soils with transient seepage face development, which has not been reported in the literature. Application of the two dimensional model for studying unconfined drainage due to sudden drop of water table at seepage face in layered soils is demonstrated. In the present work different sizes of rectangular flow domain with different types of layering are chosen. Sensitivity of seepage height due to problem dimension of layered system is studied. The effect of aspect ratio on seepage face development in case of the flow through layered soil media is demonstrated. The model is also applied to random heterogeneous soils in which the randomness of the model parameters is generated using the turning band technique. The results are discussed in terms of phreatic surface and seepage height development and also flux across the seepage face. Such accurate modeling of seepage face development and quantification of flux moving across the seepage face becomes important while modeling transport problems in variably saturated media.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we consider low-complexity turbo equalization for multiple-input multiple-output (MIMO) cyclic prefixed single carrier (CPSC) systems in MIMO inter-symbol interference (ISI) channels characterized by large delay spreads. A low-complexity graph based equalization is carried out in the frequency domain. Because of the reduction in correlation among the noise samples that happens for large frame sizes and delay spreads in frequency domain processing, improved performance compared to time domain processing is shown to be achieved. This improved performance is attractive for equalization in severely delay spread ISI channels like ultrawideband channels and underwater acoustic channels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A computational tool called ``Directional Diffusion Regulator (DDR)'' is proposed to bring forth real multidimensional physics into the upwind discretization in some numerical schemes of hyperbolic conservation laws. The direction based regulator when used with dimension splitting solvers, is set to moderate the excess multidimensional diffusion and hence cause genuine multidimensional upwinding like effect. The basic idea of this regulator driven method is to retain a full upwind scheme across local discontinuities, with the upwind bias decreasing smoothly to a minimum in the farthest direction. The discontinuous solutions are quantified as gradients and the regulator parameter across a typical finite volume interface or a finite difference interpolation point is formulated based on fractional local maximum gradient in any of the weak solution flow variables (say density, pressure, temperature, Mach number or even wave velocity etc.). DDR is applied to both the non-convective as well as whole unsplit dissipative flux terms of some numerical schemes, mainly of Local Lax-Friedrichs, to solve some benchmark problems describing inviscid compressible flow, shallow water dynamics and magneto-hydrodynamics. The first order solutions consistently improved depending on the extent of grid non-alignment to discontinuities, with the major influence due to regulation of non-convective diffusion. The application is also experimented on schemes such as Roe, Jameson-Schmidt-Turkel and some second order accurate methods. The consistent improvement in accuracy either at moderate or marked levels, for a variety of problems and with increasing grid size, reasonably indicate a scope for DDR as a regular tool to impart genuine multidimensional upwinding effect in a simpler framework. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper illustrates the application of a new technique, based on Support Vector Clustering (SVC) for the direct identification of coherent synchronous generators in a large interconnected Multi-Machine Power Systems. The clustering is based on coherency measures, obtained from the time domain responses of the generators following system disturbances. The proposed clustering algorithm could be integrated into a wide-area measurement system that enables fast identification of coherent clusters of generators for the construction of dynamic equivalent models. An application of the proposed method is demonstrated on a practical 15 generators 72-bus system, an equivalent of Indian Southern grid in an attempt to show the effectiveness of this clustering approach. The effects of short circuit fault locations on coherency are also investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phototaxis is a directed swimming response dependent upon the light intensity sensed by micro-organisms. Positive (negative) phototaxis denotes the motion directed towards (away from) the source of light. Using the phototaxis model of Ghorai, Panda, and Hill ''Bioconvection in a suspension of isotropically scattering phototactic algae,'' Phys. Fluids 22, 071901 (2010)], we investigate two-dimensional phototactic bioconvection in an absorbing and isotropic scattering suspension in the nonlinear regime. The suspension is confined by a rigid bottom boundary, and stress-free top and lateral boundaries. The governing equations for phototactic bioconvection consist of Navier-Stokes equations for an incompressible fluid coupled with a conservation equation for micro-organisms and the radiative transfer equation for light transport. The governing system is solved efficiently using a semi-implicit second-order accurate conservative finite-difference method. The radiative transfer equation is solved by the finite volume method using a suitable step scheme. The resulting bioconvective patterns differ qualitatively from those found by Ghorai and Hill ''Penetrative phototactic bioconvection,'' Phys. Fluids 17, 074101 (2005)] at a higher critical wavelength due to the effects of scattering. The solutions show transition from steady state to periodic oscillations as the governing parameters are varied. Also, we notice the accumulation of micro-organisms in two horizontal layers at two different depths via their mean swimming orientation profile for some governing parameters at a higher scattering albedo. (C) 2013 AIP Publishing LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of identification of multi-component and (or) spatially varying earthquake support motions based on measured responses in instrumented structures is considered. The governing equations of motion are cast in the state space form and a time domain solution to the input identification problem is developed based on the Kalman and particle filtering methods. The method allows for noise in measured responses, imperfections in mathematical model for the structure, and possible nonlinear behavior of the structure. The unknown support motions are treated as hypothetical additional system states and a prior model for these motions are taken to be given in terms of white noise processes. For linear systems, the solution is developed within the Kalman filtering framework while, for nonlinear systems, the Monte Carlo simulation based particle filtering tools are employed. In the latter case, the question of controlling sampling variance based on the idea of Rao-Blackwellization is also explored. Illustrative examples include identification of multi-component and spatially varying support motions in linear/nonlinear structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Orthogonal Frequency Division Multiplexing and Discrete Multitone transceivers, a guard interval called Cyclic Prefix (CP) is inserted to avoid inter-symbol interference. The length of the CP is usually greater than the impulse response of the channel resulting in a loss of useful data carriers. In order to avoid long CP, a time domain equalizer is used to shorten the channel. In this paper, we propose a method to include a delay in the zero-forcing equalizer and obtain an optimal value of the delay, based on the location of zeros of the channel. The performance of the algorithms is studied using numerical simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper attempts to unravel any relations that may exist between turbulent shear flows and statistical mechanics through a detailed numerical investigation in the simplest case where both can be well defined. The flow considered for the purpose is the two-dimensional (2D) temporal free shear layer with a velocity difference Delta U across it, statistically homogeneous in the streamwise direction (x) and evolving from a plane vortex sheet in the direction normal to it (y) in a periodic-in-x domain L x +/-infinity. Extensive computer simulations of the flow are carried out through appropriate initial-value problems for a ``vortex gas'' comprising N point vortices of the same strength (gamma = L Delta U/N) and sign. Such a vortex gas is known to provide weak solutions of the Euler equation. More than ten different initial-condition classes are investigated using simulations involving up to 32 000 vortices, with ensemble averages evaluated over up to 10(3) realizations and integration over 10(4)L/Delta U. The temporal evolution of such a system is found to exhibit three distinct regimes. In Regime I the evolution is strongly influenced by the initial condition, sometimes lasting a significant fraction of L/Delta U. Regime III is a long-time domain-dependent evolution towards a statistically stationary state, via ``violent'' and ``slow'' relaxations P.-H. Chavanis, Physica A 391, 3657 (2012)], over flow time scales of order 10(2) and 10(4)L/Delta U, respectively (for N = 400). The final state involves a single structure that stochastically samples the domain, possibly constituting a ``relative equilibrium.'' The vortex distribution within the structure follows a nonisotropic truncated form of the Lundgren-Pointin (L-P) equilibrium distribution (with negatively high temperatures; L-P parameter lambda close to -1). The central finding is that, in the intermediate Regime II, the spreading rate of the layer is universal over the wide range of cases considered here. The value (in terms of momentum thickness) is 0.0166 +/- 0.0002 times Delta U. Regime II, extensively studied in the turbulent shear flow literature as a self-similar ``equilibrium'' state, is, however, a part of the rapid nonequilibrium evolution of the vortex-gas system, which we term ``explosive'' as it lasts less than one L/Delta U. Regime II also exhibits significant values of N-independent two-vortex correlations, indicating that current kinetic theories that neglect correlations or consider them as O(1/N) cannot describe this regime. The evolution of the layer thickness in present simulations in Regimes I and II agree with the experimental observations of spatially evolving (3D Navier-Stokes) shear layers. Further, the vorticity-stream-function relations in Regime III are close to those computed in 2D Navier-Stokes temporal shear layers J. Sommeria, C. Staquet, and R. Robert, J. Fluid Mech. 233, 661 (1991)]. These findings suggest the dominance of what may be called the Kelvin-Biot-Savart mechanism in determining the growth of the free shear layer through large-scale momentum and vorticity dispersal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The steady mixed convection flow and heat transfer from an exponentially stretching vertical surface in a quiescent Maxwell fluid in the presence of magnetic field, viscous dissipation and Joule heating have been studied. The stretching velocity, surface temperature and magnetic field are assumed to have specific exponential function forms for the existence of the local similarity solution. The coupled nonlinear ordinary differential equations governing the local similarity flow and heat transfer have been solved numerically by Chebyshev finite difference method. The influence of the buoyancy parameter, viscous dissipation, relaxation parameter of Maxwell fluid, magnetic field and Prandtl number on the flow and heat transfer has been considered in detail. The Nusselt number increases significantly with the Prandtl number, but the skin friction coefficient decreases. The Nusselt number slightly decreases with increasing viscous dissipation parameter, but the skin friction coefficient slightly increases. Maxwell fluid reduces both skin friction coefficient and Nusselt number, whereas buoyancy force enhances them.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Towards ultrafast optoelectronic applications of single and a few layer reduced graphene oxide (RGO), we study time domain terahertz spectroscopy and optical pump induced changes in terahertz conductivity of self-supported RGO membrane in the spectral window of 0.5-3.5 THz. The real and imaginary parts of conductivity spectra clearly reveal low frequency resonances, attributed to the energy gaps due to the van Hove singularities in the density of states flanking the Dirac points arising due to the relative rotation of the graphene layers. Further, optical pump induced terahertz conductivity is positive, pointing to the dominance of intraband scattering processes. The relaxation dynamics of the photo-excited carriers consists of three cooling pathways: the faster (similar to 450 fs) one due to optical phonon emission followed by disorder mediated large momentum and large energy acoustic phonon emission with a time constant of a few ps (called the super-collision mechanism) and a very large time (similar to 100 ps) arising from the deep trap states. The frequency dependence of the dynamic conductivity at different delay times is analyzed in term of Drude-Smith model. (C) 2014 Published by Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although uncertainties in material properties have been addressed in the design of flexible pavements, most current modeling techniques assume that pavement layers are homogeneous. The paper addresses the influence of the spatial variability of the resilient moduli of pavement layers by evaluating the effect of the variance and correlation length on the pavement responses to loading. The integration of the spatially varying log-normal random field with the finite-difference method has been achieved through an exponential autocorrelation function. The variation in the correlation length was found to have a marginal effect on the mean values of the critical strains and a noticeable effect on the standard deviation which decreases with decreases in correlation length. This reduction in the variance arises because of the spatial averaging phenomenon over the softer and stiffer zones generated because of spatial variability. The increase in the mean value of critical strains with decreasing correlation length, although minor, illustrates that pavement performance is adversely affected by the presence of spatially varying layers. The study also confirmed that the higher the variability in the pavement layer moduli, introduced through a higher value of coefficient of variation (COV), the higher the variability in the pavement response. The study concludes that ignoring spatial variability by modeling the pavement layers as homogeneous that have very short correlation lengths can result in the underestimation of the critical strains and thus an inaccurate assessment of the pavement performance. (C) 2014 American Society of Civil Engineers.