900 resultados para fibra de modal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the main causes of above knee or transfemoral amputation (TFA) in the developed world is trauma to the limb. The number of people undergoing TFA due to limb trauma, particularly due to war injuries, has been increasing. Typically the trauma amputee population, including war-related amputees, are otherwise healthy, active and desire to return to employment and their usual lifestyle. Consequently there is a growing need to restore long-term mobility and limb function to this population. Traditionally transfemoral amputees are provided with an artificial or prosthetic leg that consists of a fabricated socket, knee joint mechanism and a prosthetic foot. Amputees have reported several problems related to the socket of their prosthetic limb. These include pain in the residual limb, poor socket fit, discomfort and poor mobility. Removing the socket from the prosthetic limb could eliminate or reduce these problems. A solution to this is the direct attachment of the prosthesis to the residual bone (femur) inside the residual limb. This technique has been used on a small population of transfemoral amputees since 1990. A threaded titanium implant is screwed in to the shaft of the femur and a second component connects between the implant and the prosthesis. A period of time is required to allow the implant to become fully attached to the bone, called osseointegration (OI), and be able to withstand applied load; then the prosthesis can be attached. The advantages of transfemoral osseointegration (TFOI) over conventional prosthetic sockets include better hip mobility, sitting comfort and prosthetic retention and fewer skin problems on the residual limb. However, due to the length of time required for OI to progress and to complete the rehabilitation exercises, it can take up to twelve months after implant insertion for an amputee to be able to load bear and to walk unaided. The long rehabilitation time is a significant disadvantage of TFOI and may be impeding the wider adoption of the technique. There is a need for a non-invasive method of assessing the degree of osseointegration between the bone and the implant. If such a method was capable of determining the progression of TFOI and assessing when the implant was able to withstand physiological load it could reduce the overall rehabilitation time. Vibration analysis has been suggested as a potential technique: it is a non destructive method of assessing the dynamic properties of a structure. Changes in the physical properties of a structure can be identified from changes in its dynamic properties. Consequently vibration analysis, both experimental and computational, has been used to assess bone fracture healing, prosthetic hip loosening and dental implant OI with varying degrees of success. More recently experimental vibration analysis has been used in TFOI. However further work is needed to assess the potential of the technique and fully characterise the femur-implant system. The overall aim of this study was to develop physical and computational models of the TFOI femur-implant system and use these models to investigate the feasibility of vibration analysis to detect the process of OI. Femur-implant physical models were developed and manufactured using synthetic materials to represent four key stages of OI development (identified from a physiological model), simulated using different interface conditions between the implant and femur. Experimental vibration analysis (modal analysis) was then conducted using the physical models. The femur-implant models, representing stage one to stage four of OI development, were excited and the modal parameters obtained over the range 0-5kHz. The results indicated the technique had limited capability in distinguishing between different interface conditions. The fundamental bending mode did not alter with interfacial changes. However higher modes were able to track chronological changes in interface condition by the change in natural frequency, although no one modal parameter could uniquely distinguish between each interface condition. The importance of the model boundary condition (how the model is constrained) was the key finding; variations in the boundary condition altered the modal parameters obtained. Therefore the boundary conditions need to be held constant between tests in order for the detected modal parameter changes to be attributed to interface condition changes. A three dimensional Finite Element (FE) model of the femur-implant model was then developed and used to explore the sensitivity of the modal parameters to more subtle interfacial and boundary condition changes. The FE model was created using the synthetic femur geometry and an approximation of the implant geometry. The natural frequencies of the FE model were found to match the experimental frequencies within 20% and the FE and experimental mode shapes were similar. Therefore the FE model was shown to successfully capture the dynamic response of the physical system. As was found with the experimental modal analysis, the fundamental bending mode of the FE model did not alter due to changes in interface elastic modulus. Axial and torsional modes were identified by the FE model that were not detected experimentally; the torsional mode exhibited the largest frequency change due to interfacial changes (103% between the lower and upper limits of the interface modulus range). Therefore the FE model provided additional information on the dynamic response of the system and was complementary to the experimental model. The small changes in natural frequency over a large range of interface region elastic moduli indicated the method may only be able to distinguish between early and late OI progression. The boundary conditions applied to the FE model influenced the modal parameters to a far greater extent than the interface condition variations. Therefore the FE model, as well as the experimental modal analysis, indicated that the boundary conditions need to be held constant between tests in order for the detected changes in modal parameters to be attributed to interface condition changes alone. The results of this study suggest that in a clinical setting it is unlikely that the in vivo boundary conditions of the amputated femur could be adequately controlled or replicated over time and consequently it is unlikely that any longitudinal change in frequency detected by the modal analysis technique could be attributed exclusively to changes at the femur-implant interface. Therefore further development of the modal analysis technique would require significant consideration of the clinical boundary conditions and investigation of modes other than the bending modes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A range of interventions are being implemented in Australia to apprehend and deter drug driving behaviour, in particular the recent implementation of random roadside drug testing procedures in Queensland. Given this countermeasure has a strong deterrence foundation, it is of interest to determine whether deterrence-based perceptual factors are influencing this offending behaviour or whether self-reported drug driving is heavily dependent upon illicit substance consumption levels and past offending behaviour. This study involves a sample of Queensland motorists (N = 898) who completed a self-report questionnaire that collected a range of information, including drug driving and drug consumption practices, conviction history, and perceptual deterrence factors. The aim was to examine what factors influence current drug driving behaviours. Analysis of the collected data revealed that approximately 20% of participants reported drug driving at least once in the last six months. Overall, there was considerable variability in the respondents' perceptions regarding the certainty, severity and swiftness of legal sanctions, although the largest proportion of the sample did not consider such sanctions to be certain, severe or swift. In regard to predicting those who intended to drug drive again in the future, a combination of perceptual and behavioural-based factors were associated with such intentions. However, a closer examination revealed that behaviours, rather than perceptions, proved to have a greater level of influence on the current sample's future intentions to offend. This paper further outlines the major findings of the study and highlights that multi-modal interventions are most likely required to reduce the prevalence of drug driving on public roads.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-density living in inner-urban areas has been promoted to encourage the use of more sustainable modes of travel to reduce greenhouse gas emissions. However, previous research presents mixed results on the relationship between living in proximity to transport systems and reduced car-dependency. This research examines inner-city residents’ transportation practices and perceptions, via 24 qualitative interviews with residents from high-density dwellings in inner-city Brisbane, Australia. Whilst participants consider public transport accessible and convenient, car use continues to be relied on for many journeys. Transportation choices are justified through complex definitions of convenience containing both utilitarian and psycho-social elements,with three key themes identified: time-efficiency, single versus multi-modal trips, and distance to and purpose of journey, as well as attitudinal, affective and symbolic elements related to transport mode use. Understanding conceptions of transport convenience held by different segments of the transport users market,alongside other factors strongly implicated in travel mode choice, can ensure targeted improvements in sustainable transport service levels and infrastructure as well as information service provision and behavioural change campaigns.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We define a semantic model for purpose, based on which purpose-based privacy policies can be meaningfully expressed and enforced in a business system. The model is based on the intuition that the purpose of an action is determined by its situation among other inter-related actions. Actions and their relationships can be modeled in the form of an action graph which is based on the business processes in a system. Accordingly, a modal logic and the corresponding model checking algorithm are developed for formal expression of purpose-based policies and verifying whether a particular system complies with them. It is also shown through various examples, how various typical purpose-based policies as well as some new policy types can be expressed and checked using our model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the outcome of investigations and studies of the vibratioon characteristics and response of low frequency structural systems for a composite concrete steel floor plate and a reverse profiled cable tensioned foot bridge. These highly dynamic and slender structure are the engineering response to planning, aesthetic and environmental influences, but are prone to excessive and complex vibration. A number of design codes and practice guides provided information to engineers for vibration mitigation However, they are limited to very simple load function applied to a few uncoupled translational modes of excitation. Motivated by the need to address the knowledge gaps in this area, the investigations described in this paper focused on synchronous multi-modal and coupled excitation of the floor plate and footbridge with considerations for torsinal effects. The results showed the potential for adverse dynamic response from multi-modal and coupled excitation influenced by patterned loading, structure geometry, stiffness distribution, directional effects, forcing functions based on activity frequency and duration of foot contact, and modal participation. It was also shown that higher harmonics of the load frequency can excite higher modes in the composite floor structure. Such responsive behaviour is prevalent mainly in slender and lightweight construction and not in stiffer and heavier structural systems. The analytical techniques and methods used in these investigations can supplement the current limited code and best practice provisions for mitigating the impact of human induced vibrations in slender structural systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this review is to update expected values for pedometer-determined physical activity in free-living healthy older populations. A search of the literature published since 2001 began with a keyword (pedometer, "step counter," "step activity monitor" or "accelerometer AND steps/day") search of PubMed, Cumulative Index to Nursing & Allied Health Literature (CINAHL), SportDiscus, and PsychInfo. An iterative process was then undertaken to abstract and verify studies of pedometer-determined physical activity (captured in terms of steps taken; distance only was not accepted) in free-living adult populations described as ≥ 50 years of age (studies that included samples which spanned this threshold were not included unless they provided at least some appropriately age-stratified data) and not specifically recruited based on any chronic disease or disability. We identified 28 studies representing at least 1,343 males and 3,098 females ranging in age from 50–94 years. Eighteen (or 64%) of the studies clearly identified using a Yamax pedometer model. Monitoring frames ranged from 3 days to 1 year; the modal length of time was 7 days (17 studies, or 61%). Mean pedometer-determined physical activity ranged from 2,015 steps/day to 8,938 steps/day. In those studies reporting such data, consistent patterns emerged: males generally took more steps/day than similarly aged females, steps/day decreased across study-specific age groupings, and BMI-defined normal weight individuals took more steps/day than overweight/obese older adults. The range of 2,000–9,000 steps/day likely reflects the true variability of physical activity behaviors in older populations. More explicit patterns, for example sex- and age-specific relationships, remain to be informed by future research endeavors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transit Oriented Developments (TODs) are often designed to promote the use of sustainable modes of transport and reduce car usage. This paper investigates the effect of personal and transit characteristics on travel choices of TOD users. Binary logistic regression models were developed to determine the probability of choosing sustainable modes of transport including walking, cycling and public transport. Kelvin Grove Urban Village (KGUV) located in Brisbane, Australia was chosen as case study TOD. The modal splits for employees, students, shoppers and residents showed that 47% of employees, 84% of students, 71% of shoppers and 56% of residents used sustainable modes of transport.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adolescents are both aware of and have the impetuous to exploit aspects of Science, Technology, Engineering and Mathematics (STEM) within their personal lives. Whether they are surfing, cycling, skateboarding or shopping, STEM concepts impact their lives. However science, mathematics, engineering and technology are still treated in the classroom as separate fragmented entities in the educational environment where most classroom talk is seemingly incomprehensible to the adolescent senses. The aim of this study was to examine the experiences of young adolescents with the aim of transforming school learning at least of science into meaningful experiences that connected with their lives using a self-study approach. Over a 12-month period, the researcher, an experienced secondary-science teacher, designed, implemented and documented a range of pedagogical practices with his Year-7 secondary science class. Data for this case study included video recordings, journals, interviews and surveys of students. By setting an environment empathetic to adolescent needs and understandings, students were able to actively explore phenomena collaboratively through developmentally appropriate experiences. Providing a more contextually relevant environment fostered meta-cognitive practices, encouraged new learning through open dialogue, multi-modal representations and assessments that contributed to building upon, re-affirming, or challenging both the students' prior learning and the teacher’s pedagogical content knowledge. A significant outcome of this study was the transformative experiences of an insider, the teacher as researcher, whose reflections provided an authentic model for reforming pedagogy in STEM classes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper uses dynamic computer simulation techniques to develop and apply a multi-criteria procedure using non-destructive vibration-based parameters for damage assessment in truss bridges. In addition to changes in natural frequencies, this procedure incorporates two parameters, namely the modal flexibility and the modal strain energy. Using the numerically simulated modal data obtained through finite element analysis of the healthy and damaged bridge models, algorithms based on modal flexibility and modal strain energy changes before and after damage are obtained and used as the indices for the assessment of structural health state. The application of the two proposed parameters to truss-type structures is limited in the literature. The proposed multi-criteria based damage assessment procedure is therefore developed and applied to truss bridges. The application of the approach is demonstrated through numerical simulation studies of a single-span simply supported truss bridge with eight damage scenarios corresponding to different types of deck and truss damage. Results show that the proposed multi-criteria method is effective in damage assessment in this type of bridge superstructure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Significant ongoing learning needs for nurses have occurred as a direct result of the continuous introduction of technological innovations and research developments in the healthcare environment. Despite an increased worldwide emphasis on the importance of continuing education, there continues to be an absence of empirical evidence of program and session effectiveness. Few studies determine whether continuing education enhances or develops practice and the relative cost benefits of health professionals’ participation in professional development. The implications for future clinical practice and associated educational approaches to meet the needs of an increasingly diverse multigenerational and multicultural workforce are also not well documented. There is minimal research confirming that continuing education programs contribute to improved patient outcomes, nurses’ earlier detection of patient deterioration or that standards of continuing competence are maintained. Crucially, evidence-based practice is demonstrated and international quality and safety benchmarks are adhered to. An integrated clinical learning model was developed to inform ongoing education for acute care nurses. Educational strategies included the use of integrated learning approaches, interactive teaching concepts and learner-centred pedagogies. A Respiratory Skills Update education (ReSKU) program was used as the content for the educational intervention to inform surgical nurses’ clinical practice in the area of respiratory assessment. The aim of the research was to evaluate the effectiveness of implementing the ReSKU program using teaching and learning strategies, in the context of organisational utility, on improving surgical nurses’ practice in the area of respiratory assessment. The education program aimed to facilitate better awareness, knowledge and understanding of respiratory dysfunction in the postoperative clinical environment. This research was guided by the work of Forneris (2004), who developed a theoretical framework to operationalise a critical thinking process incorporating the complexities of the clinical context. The framework used educational strategies that are learner-centred and participatory. These strategies aimed to engage the clinician in dynamic thinking processes in clinical practice situations guided by coaches and educators. Methods A quasi experimental pre test, post test non–equivalent control group design was used to evaluate the impact of the ReSKU program on the clinical practice of surgical nurses. The research tested the hypothesis that participation in the ReSKU program improves the reported beliefs and attitudes of surgical nurses, increases their knowledge and reported use of respiratory assessment skills. The study was conducted in a 400 bed regional referral public hospital, the central hub of three smaller hospitals, in a health district servicing the coastal and hinterland areas north of Brisbane. The sample included 90 nurses working in the three surgical wards eligible for inclusion in the study. The experimental group consisted of 36 surgical nurses who had chosen to attend the ReSKU program and consented to be part of the study intervention group. The comparison group included the 39 surgical nurses who elected not to attend the ReSKU program, but agreed to participate in the study. Findings One of the most notable findings was that nurses choosing not to participate were older, more experienced and less well educated. The data demonstrated that there was a barrier for training which impacted on educational strategies as this mature aged cohort was less likely to take up educational opportunities. The study demonstrated statistically significant differences between groups regarding reported use of respiratory skills, three months after ReSKU program attendance. Between group data analysis indicated that the intervention group’s reported beliefs and attitudes pertaining to subscale descriptors showed statistically significant differences in three of the six subscales following attendance at the ReSKU program. These subscales included influence on nursing care, educational preparation and clinical development. Findings suggest that the use of an integrated educational model underpinned by a robust theoretical framework is a strong factor in some perceptions of the ReSKU program relating to attitudes and behaviour. There were minimal differences in knowledge between groups across time. Conclusions This study was consistent with contemporary educational approaches using multi-modal, interactive teaching strategies and a robust overarching theoretical framework to support study concepts. The construct of critical thinking in the clinical context, combined with clinical reasoning and purposeful and collective reflection, was a powerful educational strategy to enhance competency and capability in clinicians.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper discusses the vibration characteristics of a concrete-steel composite multi-panel floor structure; the use of these structures is becoming more common. These structures have many desirable properties but are prone to excessive and complex vibration, which is not currently well understood. Existing design codes and practice guides provide generic advice or simple techniques that cannot address the complex vibration in these types of low-frequency structures. The results of this study show the potential for an adverse dynamic response from higher and multi-modal excitation influenced by human-induced pattern loading, structural geometry, and activity frequency. Higher harmonics of the load frequency are able to excite higher modes in the composite floor structure in addition to its fundamental mode. The analytical techniques used in this paper can supplement the current limited code and practice guide provisions for mitigating the impact of human-induced vibrations in these floor structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Particle number concentrations and size distributions, visibility and particulate mass concentrations and weather parameters were monitored in Brisbane, Australia, on 23 September 2009, during the passage of a dust storm that originated 1400 km away in the dry continental interior. The dust concentration peaked at about mid-day when the hourly average PM2.5 and PM10 values reached 814 and 6460 µg m-3, respectively, with a sharp drop in atmospheric visibility. A linear regression analysis showed a good correlation between the coefficient of light scattering by particles (Bsp) and both PM10 and PM2.5. The particle number in the size range 0.5-20 µm exhibited a lognormal size distribution with modal and geometrical mean diameters of 1.6 and 1.9 µm, respectively. The modal mass was around 10 µm with less than 10% of the mass carried by particles smaller than 2.5 µm. The PM10 fraction accounted for about 68% of the total mass. By mid-day, as the dust began to increase sharply, the ultrafine particle number concentration fell from about 6x103 cm-3 to 3x103 cm-3 and then continued to decrease to less than 1x103 cm-3 by 14h, showing a power-law decrease with Bsp with an R2 value of 0.77 (p<0.01). Ultrafine particle size distributions also showed a significant decrease in number during the dust storm. This is the first scientific study of particle size distributions in an Australian dust storm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Damage detection in structures has become increasingly important in recent years. While a number of damage detection and localization methods have been proposed, few attempts have been made to explore the structure damage with frequency response functions (FRFs). This paper illustrates the damage identification and condition assessment of a beam structure using a new frequency response functions (FRFs) based damage index and Artificial Neural Networks (ANNs). In practice, usage of all available FRF data as an input to artificial neural networks makes the training and convergence impossible. Therefore one of the data reduction techniques Principal Component Analysis (PCA) is introduced in the algorithm. In the proposed procedure, a large set of FRFs are divided into sub-sets in order to find the damage indices for different frequency points of different damage scenarios. The basic idea of this method is to establish features of damaged structure using FRFs from different measurement points of different sub-sets of intact structure. Then using these features, damage indices of different damage cases of the structure are identified after reconstructing of available FRF data using PCA. The obtained damage indices corresponding to different damage locations and severities are introduced as input variable to developed artificial neural networks. Finally, the effectiveness of the proposed method is illustrated and validated by using the finite element modal of a beam structure. The illustrated results show that the PCA based damage index is suitable and effective for structural damage detection and condition assessment of building structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Visual activity detection of lip movements can be used to overcome the poor performance of voice activity detection based solely in the audio domain, particularly in noisy acoustic conditions. However, most of the research conducted in visual voice activity detection (VVAD) has neglected addressing variabilities in the visual domain such as viewpoint variation. In this paper we investigate the effectiveness of the visual information from the speaker’s frontal and profile views (i.e left and right side views) for the task of VVAD. As far as we are aware, our work constitutes the first real attempt to study this problem. We describe our visual front end approach and the Gaussian mixture model (GMM) based VVAD framework, and report the experimental results using the freely available CUAVE database. The experimental results show that VVAD is indeed possible from profile views and we give a quantitative comparison of VVAD based on frontal and profile views The results presented are useful in the development of multi-modal Human Machine Interaction (HMI) using a single camera, where the speaker’s face may not always be frontal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A Multimodal Seaport Container Terminal (MSCT) is a complex system which requires careful planning and control in order to operate efficiently. It consists of a number of subsystems that require optimisation of the operations within them, as well as synchronisation of machines and containers between the various subsystems. Inefficiency in the terminal can delay ships from their scheduled timetables, as well as cause delays in delivering containers to their inland destinations, both of which can be very costly to their operators. The purpose of this PhD thesis is to use Operations Research methodologies to optimise and synchronise these subsystems as an integrated application. An initial model is developed for the overall MSCT; however, due to a large number of assumptions that had to be made, as well as other issues, it is found to be too inaccurate and infeasible for practical use. Instead, a method of developing models for each subsystem is proposed that then be integrated with each other. Mathematical models are developed for the Storage Area System (SAS) and Intra-terminal Transportation System (ITTS). The SAS deals with the movement and assignment of containers to stacks within the storage area, both when they arrive and when they are rehandled to retrieve containers below them. The ITTS deals with scheduling the movement of containers and machines between the storage areas and other sections of the terminal, such as the berth and road/rail terminals. Various constructive heuristics are explored and compared for these models to produce good initial solutions for large-sized problems, which are otherwise impractical to compute by exact methods. These initial solutions are further improved through the use of an innovative hyper-heuristic algorithm that integrates the SAS and ITTS solutions together and optimises them through meta-heuristic techniques. The method by which the two models can interact with each other as an integrated system will be discussed, as well as how this method can be extended to the other subsystems of the MSCT.