918 resultados para extra virgin olive oil
Resumo:
Rhodococcus sp. strain PML026 produces an array of trehalolipid biosurfactant compounds in order to utilize hydrophobic carbon sources, such as oils and alkanes. Here, we report the high-quality draft genome sequence of this strain, which has a total length of 5,168,404 bp containing 4,835 protein-coding sequences, 12 rRNAs, and 45 tRNAs.
Resumo:
Previous studies have shown that the bioturbating polychaete Hediste (Nereis) diversicolor can affect the composition of bacterial communities in oil-contaminated sediments, but have not considered diversity specifically within bioturbator burrows or the impact on microbial eukaryotes. We tested the hypothesis that H. diversicolor burrows harbour different eukaryotic and bacterial communities compared with un-bioturbated sediment, and that bioturbation stimulates oil degradation. Oil-contaminated sediment was incubated with or without H. diversicolor for 30 days, after which sediment un-affected by H. diversicolor and burrow DNA/RNA samples were analysed using quantitative reverse transcription PCR (Q-RT-PCR) and high-throughput sequencing. Fungi dominated both burrow and un-bioturbated sediment sequence libraries; however, there was significant enrichment of bacterivorous protists and nematodes in the burrows. There were also significant differences between the bacterial communities in burrows compared with un-bioturbated sediment. Increased activity and relative abundance of aerobic hydrocarbon-degrading bacteria in the burrows coincided with the significant reduction in hydrocarbon concentration in the bioturbated sediment. This study represents the first detailed assessment of the effect of bioturbation on total microbial communities in oil-contaminated sediments. In addition, it further shows that bioturbation is a significant factor in determining microbial diversity within polluted sediments and plays an important role in stimulating bioremediation.
Resumo:
Many modern artists paint in oil or oil-modified alkyd paints over acrylic grounds. In some cases the oil based paints do not remain adhered to the ground. In a set of composite samples of oil or alkyd paints, over acrylic grounds, naturally aged for nine years, some of the samples delaminated. Samples were analyzed with X-ray fluorescence (XRF), inductively coupled plasma (ICP), Fourier transform infrared - attenuated total reflectance (FTIR-ATR), scanning electron microscopy (SEM), pyrolysis gas-chromatography mass-spectrometry (PY-GC/MS), laser desorption/ionization mass-spectrometry (LDI-MS), atomic force microscopy (AFM) and other methods, in order to find what the delaminating ones have in common. In addition, two examples of severely delaminating paintings were examined, to confirm the results from the laboratory-prepared samples. Results indicate the main cause of delamination is metal soaps in the oil paint and particularly zinc soaps. There is some evidence that metal soaps were more concentrated at the interface between the layers and this disrupted the adhesion. The ground is a minor consideration as well, rougher grounds providing better adhesion than smooth ones.
Resumo:
The most common mode of deactivation suffered by catalysts fitted to two-stroke engines has traditionally been thermal degradation, or even meltdown, of the washcoat and substrate. The high temperatures experienced by these catalysts are caused by excessively high concentrations of HC and CO in the exhaust gas which are, in turn, caused by a rich AFR and the loss of neat fuel to the exhaust during the scavenging period. The effects of catalyst poisoning due to additives in the oil is often regarded as a secondary, or even negligible, deactivating mechanism in two-stroke catalysts and has therefore received little attention. However, with the introduction of direct in-cylinder fuel injection to some larger versions of this engine, the quantities of HC escaping to the exhaust can be reduced to levels similar to those found on four-stroke gasoline engines. Under these conditions, the effects of poisoning are much more significant to catalyst durability, particularly for crankcase scavenged derivatives which allow considerable quantities of oil to escape into the exhaust in a neat, or partially burned form. In this paper the effects of oil-derived sulphur on catalyst performance are examined using specialised test apparatus. The oil used throughout the study was formulated specifically for a two-stroke engine fitted with direct in-cylinder fuel injection. The sulphur content of this oil was 0.21% by mass and particular attention was paid to the role of this element in the resulting deactivation. The catalyst was also designed for two-stroke applications and contained a high palladium loading of 300g/ft3 (28g/l) to prolong the life of the catalyst. It was found that the sulphur caused permanent deactivation of the CO reaction and increased the light-off temperature by around 40oC after oiling for 60 hours. This deactivation was progressive and led to a reduction in surface area of the washcoat, particularly in the micropores of around 5Å diameter. By using a validated catalyst model the change in surface area of the precious metal was estimated. It was found that the simulated palladium surface area had to be reduced by a factor of around 7.5 to produce the light-off temperature of the deactivated catalyst. Conversely, the light-off temperature of the C3H6 reaction was barely affected by the deactivation.
Resumo:
Parthenogenesis has been documented in all major jawed vertebrate lineages except mammals and cartilaginous fishes (Class Chondrichthyes: sharks, batoids, chimeras). Reports of captive female sharks giving birth despite being held in the extended absence of males have generally been ascribed to prior matings coupled with long-term sperm storage by the females. Here we provide the first genetic evidence for chondrichthyan parthenogenesis, involving a hammerhead shark. This finding also broadens the known occurrence of a specific type of asexual development (automictic parthenogenesis) among vertebrates, extending recently raised concerns about the potential negative effect of this type of facultative parthenogenesis on the genetic diversity of threatened vertebrate species.