902 resultados para epoxy molding compound (EMC)
Resumo:
The present study evaluates the in vitro and in vivo trypanocidal activity of ursolic acid and oleanolic acid against the Bolivia strain of Trypanosoma cruzi. Their acute toxicity is also assessed on the basis of median lethal dose (DL50) determination and quantification of biochemical parameters. Ursolic acid is the most active compound in vitro, furnishing IC50 of 25.5 mu M and displaying 77% of trypomastigote lysis at a concentration of 128 A mu M. In agreement with in vitro assays, the results obtained for the in vivo assay reveals that ursolic acid (at a dose of 20 mg/Kg/day) provides the most significant reduction in the number of parasites at the parasitemic peak. Results concerning the LD50 assay and the biochemical parameters evaluated in the present study demonstrate that these substances can be safely used on an experimental basis.
Resumo:
Lichen phenolic compounds exhibit antioxidant, antimicrobial, antiproliferative. and cytotoxic activities. The purpose of this study was to evaluate the anticancer activity of lecanoric acid, a secondary metabolite of the lichen Parmotrema tinctorum, and its derivatives, orsellinates, obtained by structural modification. A cytotoxicity assay was carried out hi vitro with sulforhodamine B (SRB) using HEp-2 larynx carcinoma, MCF7 breast carcinoma, 786-0 kidney carcinoma, and B16-F10 murine melanoma cell lines, in addition to a normal (Vero) cell line in order to calculate the selectivity index of the compounds. n-Butyl orsellinate was the most active compound, with IC(50) Values (the concentration that inhibits 50% of growth) ranging from 7.2 to 14.0 mu g/ml, against all the cell lines tested. The compound was more active (IC(50), = 11.4 mu g/mL) against B16-F10 cells than was cisplatin (12.5 mu g/mL). Conversely, lecanoric acid and methyl orsellinate were less active against all cell lines, having an IC(50) value higher than 50 mu g/mL. Ethyl orsellinate was more active against HEp-2 than against MCF7, 786-0, or B16-F10 cells. The same pattern was observed for n-propyl and n-butyl orsellinates. n-Pentyl orsellinate was less active than n-propyl or n-butyl orsellinates against HEp-2 cells. The orsellinate activity increased with chain elongation (from methyl to n-butyl), a likely consequence of an increase in lipophilicity. The results revealed that the structural modification of lecanoric acid increases the cytotoxic activity of the derivatives tested.
Resumo:
Azo dyes constitute the largest group of colorants used in industry and can pass through municipal waste water plants nearly unchanged due to their resistance to aerobic treatment, which potentially exposes humans and local biota to adverse effects. Unfortunately, little is known about their environmental fate. Under anaerobic conditions, some azo dyes are cleaved by microorganisms forming potentially carcinogenic aromatic amines. In the present study, the azo dye Disperse Orange 1, widely used in textile dyeing, was tested using the comet, Salmonella/microsome mutagenicity, cell viability, Daphnia similis and Microtox (R) assays. The human hepatoma cell line (HepG2) was used in the comet assay and for cell viability. In the mutagenicity assay. Salmonella typhimurium strains with different levels of nitroreductase and o-acetyltransferase were used. The dye showed genotoxic effects with respect to HepG2 cells at concentrations of 0.2, 0.4, 1.0, 2.0 and 4.0 mu g/mL. In the mutagenicity assay, greater responses were obtained with the strains TA98 and YG1041, suggesting that this compound mainly induces frameshift mutations. Moreover, the mutagenicity was greatly enhanced with the strains overproducing nitroreductase and o-acetyltransferase, showing the importance of these enzymes in the mutagenicity of this dye. In addition, the compound induced apoptosis after 72 h in contact with the HepG2 cells. No toxic effects were observed for either D. similis or Vibrio fischeri. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A novel labdane diterpene was isolated from the plant Acritopappus longifolius. The structure of this compound was established by 1D- and 2D-nuclear magnetic resonance spectroscopic techniques and mass spectrometry data. N-Methyl-4-hydroxy-trans-proline, stigmasterol-3-O-beta-D-glycoside. and the flavonoids quercetin, luteolin, kaempferol, and rutin were also isolated. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This work reports the isolation of the sesquiterpene lactone 15-deoxygoyazensolide from the stems of Minasia alpestris and the evaluation of its antimicrobial activity against the following oral pathogens: Enterococcus faecalis, Streptococcus salivarius, Streptococcus sobrinus, Streptococcus mutans, Streptococcus mitis, Streptococcus sanguinis, and Lactobacillus casei. Despite the cytotoxicity and genotoxicity of other sesquiterpene lactones of the furanoheliangolide-type, our results revealed that this compound exhibits low antibacterial activity against the evaluated oral pathogens; however, an interesting selectivity against E. faecalis (minimum inhibitory concentration [MIC] = 40 mu g mL(-1)) and S. sobrinus (MIC = 60 mu g mL(-1)) was observed.
Resumo:
The goal of this study is to produce oleanolic acid derivatives by biotransformation process using Mucor rouxii and evaluate their antimicrobial activity against oral pathogens. The microbial transformation was carried out in shake flasks at 30A degrees C for 216 h with shaking at 120 rpm. Three new derivatives, 7 beta-hydroxy-3-oxo-olean-12-en-28-oic acid, 7 beta,21 beta-dihydroxy-3-oxo-olean-12-en-28-oic acid, and 3 beta,7 beta,21 beta-trihydroxyolean-12-en-28-oic acid, and one know compound, 21 beta-hydroxy-3-oxo-olean-12-en-28-oic acid, were isolated, and the structures were elucidated on the basis of spectroscopic analyses. The antimicrobial activity of the substrate and its transformed products was evaluated against five oral pathogens. Among these compounds, the derivative 21 beta-hydroxy-3-oxo-olean-12-en-28-oic acid displayed the strongest activity against Porphyromonas gingivalis, which is a primary etiological agent of periodontal disease. In an attempt to improve the antimicrobial activity of the derivative 21 beta-hydroxy-3-oxo-olean-12-en-28-oic acid, its sodium salt was prepared, and the minimum inhibitory concentration against P. gingivalis was reduced by one-half. The biotransformation process using M. rouxii has potential to be applied to the production of oleanolic acid derivatives. Research and antimicrobial activity evaluation of new oleanolic acid derivatives may provide an important contribution to the discovery of new adjunct agents for treatment of dental diseases such as dental caries, gingivitis, and periodontitis.
Resumo:
It was intended to examine the in vitro penetration of cisplatin (CIS) through porcine skin in the presence of different concentrations of monoolein (MO) as well as to verify the main barrier for CIS skin penetration. In vitro skin penetration of CIS was studied from propylene glycol (PG) solutions containing 0%, 5%, 10%, and 20% of MO using Franz-type diffusion cell and porcine ear skin. Pretreatment experiments with MO and experiments with skin without stratum corneum (SC) were also carried out. Skin penetration studies of CIS showed that the presence of MO doubled the drug permeation through the intact skin. However, permeation studies through the skin without SC caused only a small enhancement of CIS permeation compared to intact skin. Moreover, pretreatment of skin with MO formulations did not show any significant increase in the flux of the drug. In conclusion, MO did not act as a real penetration enhancer for CIS, but it increased the drug partition to the receptor solution improving CIS transdermal permeation. The absence of improvement in drug permeation by MO pretreatment and by the removal of SC indicates that the SC is not the main barrier for the permeation of the metal coordination compound. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
Inosine triphosphate pyrophosphohydrolase (ITPase) deficiency is a common inherited condition characterized by the abnormal accumulation of inosine triphosphate (ITP) in erythrocytes. The genetic basis and pathological consequences of ITPase deficiency are unknown. We have characterized the genomic structure of the ITPA gene, showing that it has eight exons. Five single nucleotide polymorphisms were identified, three silent (138GMA, 561GMA, 708GMA) and two associated with ITPase deficiency (94CMA, IVS2+21AMC). Homozygotes for the 94CMA missense mutation (Pro32 to Thr) had zero erythrocyte ITPase activity, whereas 94CMA heterozygotes averaged 22.5% of the control mean, a level of activity consistent with impaired subunit association of a dimeric enzyme. ITPase activity of IVS2+21AMC homozygotes averaged 60% of the control mean. In order to explore further the relationship between mutations and enzyme activity, we examined the association between genotype and ITPase activity in 100 healthy controls. Ten subjects were heterozygous for 94CMA (allele frequency: 0.06), 24 were heterozygotes for IVS2+21AMC (allele frequency: 0.13) and two were compound heterozygous for these mutations. The activities of IVS2+21AMC heterozygotes and 94CMA/IVS2+21AMC compound heterozygotes were 60% and 10%, respectively, of the normal control mean, suggesting that the intron mutation affects enzyme activity. In all cases when ITPase activity was below the normal range, one or both mutations were found. The ITPA genotype did not correspond to any identifiable red cell phenotype. A possible relationship between ITPase deficiency and increased drug toxicity of purine analogue drugs is proposed.
Resumo:
[beta]-Hydroxy [beta]-methylbutyrate (HMB), a metabolite of the essential amino acid leucine, is one of the latest dietary supplements promoted to enhance gains in strength and lean body mass associated with resistance training. Unlike anabolic hormones that induce muscle hypertrophy by increasing muscle protein synthesis, HMB is claimed to influence strength and lean body mass by acting as an anticatabolic agent, minimising protein breakdown and damage to cells that may occur with intense exercise. Research on HMB has recently tested this hypothesis, under the assumption that it may be the active compound associated with the anticatabolic effects of leucine and its metabolites. While much of the available literature is preliminary in nature and not without methodological concern, there is support for the claims made regarding HMB supplementation, at least in young, previously untrained individuals. A mechanism by which this may occur is unknown, but research undertaken to date suggests there may be a reduction in skeletal muscle damage, although this has not been assessed directly. The response of resistance trained and older individuals to HMB administration is less clear. While the results of research conducted to date appear encouraging, caution must be taken when interpreting outcomes as most manuscripts are presented in abstract form only, not having to withstand the rigors of peer review. Of the literature reviewed relating to HMB administration during resistance training, only 2 papers are full manuscripts appearing in peer reviewed journals. The remaining 8 papers are published as abstracts only, making it difficult to critically review the research. There is clearly a need for more tightly controlled, longer duration studies to verify if HMB enhances strength and muscular hypertrophy development associated with resistance training across a range of groups, including resistance trained individuals.
Resumo:
The acid-mediated transformation of syn and anti methylene interrupted cis,cis and cis,trans bisepoxides to tetrahydrofurans is high yielding, and demonstrates both regioselectivity and stereoselectivity. Trans,trans methylene interrupted bisepoxides do not yield tetrahydrofurans under the same conditions.
Resumo:
Four adducts of triphenylphosphine oxide with aromatic carboxylic acids have been synthesized and tested for second-order non-linear optical properties. These were with N-methylpyrrole-2-carboxylic acid (I), indole-2-carboxylic acid (2), 3-dimethylaminobenzoic acid (3), and thiophen-2-carboxylic acid (4). Compound (1) produced clear, colourless crystals (space group P2(1)2(1)2(1) With a 9.892(1), b 14.033(1), c 15.305(1) Angstrom, Z 4) which allowed the structure to be determined by X-ray diffraction.
Resumo:
Chemical analysis of N. anomala collected off rock platforms along the southern coast of Australia yielded a cis-dihydroxytetrahydrofuran (2), the structure for which was assigned by spectroscopic analysis, chemical derivatization and biomimetic synthesis. Tetrahydrofurans from Notheia anomola are reported for the first time as potent and selective inhibitors of the larval development of parasitic nematodes. SAR observations are made on a selection of natural, semi-synthetic and synthetic tetrahydrofurans. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
RT-PCR and direct sequence analyses were used to define mutations in the cystathionine beta-synthase (CBS) gene in two unrelated male patients with vitamin B6 nonresponsive homocystinuria. Both patients were compound heterozygotes for CBS alleles containing point mutations. One patient had a maternally derived G-->A transition in the splice-donor site of intron 1, resulting in aberrant splicing of CBS mRNA. The other allele contained a missense mutation resulting in the previously reported E144K mutant CBS protein. The second patient had a maternally derived 4 bp insertion in exon 17, predicted to cause a CBS peptide of altered amino acid sequence. A 494G-->A transition was found in exon 4 of the other allele, predicting a C165Y substitution. Expression of recombinant CBS protein, containing the C165Y mutation, had no detectable catalytic activity. Each mutation was confirmed in genomic DNA. (C) 1998 Wiley-Liss, Inc.
Resumo:
Predicted area under curve (AUC), mean transit time (MTT) and normalized variance (CV2) data have been compared for parent compound and generated metabolite following an impulse input into the liver, Models studied were the well-stirred (tank) model, tube model, a distributed tube model, dispersion model (Danckwerts and mixed boundary conditions) and tanks-in-series model. It is well known that discrimination between models for a parent solute is greatest when the parent solute is highly extracted by the liver. With the metabolite, greatest model differences for MTT and CV2 occur when parent solute is poorly extracted. In all cases the predictions of the distributed tube, dispersion, and tasks-in-series models are between the predictions of the rank and tube models. The dispersion model with mixed boundary conditions yields identical predictions to those for the distributed tube model (assuming an inverse gaussian distribution of tube transit times). The dispersion model with Danckwerts boundary conditions and the tanks-in series models give similar predictions to the dispersion (mixed boundary conditions) and the distributed tube. The normalized variance for parent compound is dependent upon hepatocyte permeability only within a distinct range of permeability values. This range is similar for each model but the order of magnitude predicted for normalized variance is model dependent. Only for a one-compartment system is the MIT for generated metabolite equal to the sum of MTTs for the parent compound and preformed metabolite administered as parent.
Resumo:
The aim of this work is to develop 3-acyl prodrugs of the potent analgesic morphine-6-sulfate (M6S). These are expected to have higher potency and/or exhibit longer duration of analgesic action than the parent compound. M6S and the prodrugs were synthesized, then purified either by recrystallization or by semi-preparative HPLC and the structures confirmed by mass spectrometry, IR spectrophotometry and by detailed 1- and 2-D NMR studies. The lipophilicities of the compounds were assessed by a combination of shake-flask, group contribution and HPLC retention methods. The octanol-buffer partition coefficient could only be obtained directly for 3-heptanoylmorphine-6-sulfate, using the shake-flask method. The partition coefficients (P) for the remaining prodrugs were estimated from known methylene group contributions. A good linear relationship between log P and the HPLC log capacity factors was demonstrated. Hydrolysis of the 3-acetyl prodrug, as a representative of the group, was found to occur relatively slowly in buffers (pH range 6.15-8.01), with a small buffer catalysis contribution. The rates of enzymatic hydrolysis of the 3-acyl group in 10% rat blood and in 10% rat brain homogenate were investigated. The prodrugs followed apparent first order hydrolysis kinetics, with a significantly faster hydrolysis rate found in 10% rat brain homogenate than in 10% rat blood for all compounds. (C) 1998 Elsevier Science B.V. All rights reserved.