994 resultados para environmental-research
Resumo:
Underwater spectral reflectance was measured for selected biotic and abiotic coral reef features of Glovers Reef, Belize from March 6 - 10, 2005. Spectral reflectance's of 63 different benthic types were obtained in-situ. An Ocean Optics USB2000 spectrometer was deployed in an custom made underwater housing with a 0.5 m fiber-optic probe mounted next to an artificial light source. Spectral readings were collected with the probe (bear fibre) about 5 cm from the target to ensure that the target would fill the field of view of the fiber optic (FOV diameter ~4.4 cm), as well as to reduce the attenuating effect of the intermediate water (Roelfsema et al., 2006). Spectral readings included for one target included: 1 reading of the covered spectral fibre to correct for instrument noise, 1 reading of spectralon panel mounted on divers wrist to measure incident ambient light, and 8 readings of the target. Spectral reflectance was calculated for each target by first subtracting the instrument noise reading from each other reading. The corrected target readings were then divided by the corrected spectralon reading resulting in spectral reflectance of each target reading. An average target spectral reflectance was calculated by averaging the eight individual spectral reflectance's of the target. If an individual target spectral reflectance was visual considered an outlier, it was not included in the average spectral reflectance calculation. See Roelfsema at al. (2006) for additional info on the methodology of underwater spectra collection.
Resumo:
The Baltic Sea is a semi-enclosed sea with a steady salinity gradient (3 per mil-30 per mil). Organisms have adapted to such low salinities, but are suspected to be more susceptible to stress. Within the frame of the integrated environmental monitoring BONUS + project "BEAST" the applicability of immune responses of the blue mussel was investigated in Danish coastal waters. The sampling sites were characterised by a salinity range (11-19 per mil) and different mixtures of contaminants (metals, PAHs and POPs), according to chemical analysis of mussel tissues. Variation partitioning (redundancy analysis) was applied to decompose salinity and contamination effects. The results indicated that cellular immune responses (total and differential haemocyte count, phagocytic activity and apoptosis) were mainly influenced by contaminants, whereas humoral factors (haemolytic activity) were mainly impacted by salinity. Hence, cellular immune functions may be suitable as biomarkers in monitoring programmes for the Baltic Sea and other geographic regions with salinity variances of the studied range.
Resumo:
Sustainability of tundra vegetation under changing climate on the Yamal Peninsula, northwestern Siberia, home to the world's largest area of reindeer husbandry, is of crucial importance to the local native community. An integrated investigation is needed for better understanding of the effects of soils, climate change and grazing on tundra vegetation in the Yamal region. In this study we applied a nutrient-based plant community model - ArcVeg - to evaluate how two factors (soil organic nitrogen (SON) levels and grazing) interact to affect tundra responses to climate warming across a latitudinal climatic gradient on the Yamal Peninsula. Model simulations were driven by field-collected soil data and expected grazing patterns along the Yamal Arctic Transect (YAT), within bioclimate subzones C (high arctic), D (northern low arctic) and E (southern low arctic). Plant biomass and NPP (net primary productivity) were significantly increased with warmer bioclimate subzones, greater soil nutrient levels and temporal climate warming, while they declined with higher grazing frequency. Temporal climate warming of 2 °C caused an increase of 665 g/m**2 in total biomass at the high SON site in subzone E, but only 298 g/m**2 at the low SON site. When grazing frequency was also increased, total biomass increased by only 369 g/m**2 at the high SON site in contrast to 184 g/m**2 at the low SON site in subzone E. Our results suggest that high SON can support greater plant biomass and plant responses to climate warming, while low SON and grazing may limit plant response to climate change. In addition to the first order factors (SON, bioclimate subzones, grazing and temporal climate warming), interactions among these significantly affect plant biomass and productivity in the arctic tundra and should not be ignored in regional scale studies.