938 resultados para environmental applications
Resumo:
Environmental issues continue to capture international headlines and remain the subject of intense intellectual, political and public debate. As a result, environmental law is widely recognised as the fastest growing area of international jurisprudence. This, combined with the rapid expansion of environmental agreements and policies, has created a burgeoning landscape of administrative, regulatory and judicial regimes. Emerging from these developments are increases in environmental offences, and more recently environmental crimes. The judicial processing of environmental or ‘green’ crimes is rapidly developing across many jurisdictions. Since 1979, Australia has played a lead role in criminal justice processing of environment offences through the New South Wales Land and Environment Court (NSW LEC). This article draws on case data, observations and interviews with court personnel, to examine the ways in which environmental justice is now administered through the existing court structures, and how it has changed since the Court’s inception.
Resumo:
This paper presents an efficient face detection method suitable for real-time surveillance applications. Improved efficiency is achieved by constraining the search window of an AdaBoost face detector to pre-selected regions. Firstly, the proposed method takes a sparse grid of sample pixels from the image to reduce whole image scan time. A fusion of foreground segmentation and skin colour segmentation is then used to select candidate face regions. Finally, a classifier-based face detector is applied only to selected regions to verify the presence of a face (the Viola-Jones detector is used in this paper). The proposed system is evaluated using 640 x 480 pixels test images and compared with other relevant methods. Experimental results show that the proposed method reduces the detection time to 42 ms, where the Viola-Jones detector alone requires 565 ms (on a desktop processor). This improvement makes the face detector suitable for real-time applications. Furthermore, the proposed method requires 50% of the computation time of the best competing method, while reducing the false positive rate by 3.2% and maintaining the same hit rate.
Resumo:
The ability to estimate the asset reliability and the probability of failure is critical to reducing maintenance costs, operation downtime, and safety hazards. Predicting the survival time and the probability of failure in future time is an indispensable requirement in prognostics and asset health management. In traditional reliability models, the lifetime of an asset is estimated using failure event data, alone; however, statistically sufficient failure event data are often difficult to attain in real-life situations due to poor data management, effective preventive maintenance, and the small population of identical assets in use. Condition indicators and operating environment indicators are two types of covariate data that are normally obtained in addition to failure event and suspended data. These data contain significant information about the state and health of an asset. Condition indicators reflect the level of degradation of assets while operating environment indicators accelerate or decelerate the lifetime of assets. When these data are available, an alternative approach to the traditional reliability analysis is the modelling of condition indicators and operating environment indicators and their failure-generating mechanisms using a covariate-based hazard model. The literature review indicates that a number of covariate-based hazard models have been developed. All of these existing covariate-based hazard models were developed based on the principle theory of the Proportional Hazard Model (PHM). However, most of these models have not attracted much attention in the field of machinery prognostics. Moreover, due to the prominence of PHM, attempts at developing alternative models, to some extent, have been stifled, although a number of alternative models to PHM have been suggested. The existing covariate-based hazard models neglect to fully utilise three types of asset health information (including failure event data (i.e. observed and/or suspended), condition data, and operating environment data) into a model to have more effective hazard and reliability predictions. In addition, current research shows that condition indicators and operating environment indicators have different characteristics and they are non-homogeneous covariate data. Condition indicators act as response variables (or dependent variables) whereas operating environment indicators act as explanatory variables (or independent variables). However, these non-homogenous covariate data were modelled in the same way for hazard prediction in the existing covariate-based hazard models. The related and yet more imperative question is how both of these indicators should be effectively modelled and integrated into the covariate-based hazard model. This work presents a new approach for addressing the aforementioned challenges. The new covariate-based hazard model, which termed as Explicit Hazard Model (EHM), explicitly and effectively incorporates all three available asset health information into the modelling of hazard and reliability predictions and also drives the relationship between actual asset health and condition measurements as well as operating environment measurements. The theoretical development of the model and its parameter estimation method are demonstrated in this work. EHM assumes that the baseline hazard is a function of the both time and condition indicators. Condition indicators provide information about the health condition of an asset; therefore they update and reform the baseline hazard of EHM according to the health state of asset at given time t. Some examples of condition indicators are the vibration of rotating machinery, the level of metal particles in engine oil analysis, and wear in a component, to name but a few. Operating environment indicators in this model are failure accelerators and/or decelerators that are included in the covariate function of EHM and may increase or decrease the value of the hazard from the baseline hazard. These indicators caused by the environment in which an asset operates, and that have not been explicitly identified by the condition indicators (e.g. Loads, environmental stresses, and other dynamically changing environment factors). While the effects of operating environment indicators could be nought in EHM; condition indicators could emerge because these indicators are observed and measured as long as an asset is operational and survived. EHM has several advantages over the existing covariate-based hazard models. One is this model utilises three different sources of asset health data (i.e. population characteristics, condition indicators, and operating environment indicators) to effectively predict hazard and reliability. Another is that EHM explicitly investigates the relationship between condition and operating environment indicators associated with the hazard of an asset. Furthermore, the proportionality assumption, which most of the covariate-based hazard models suffer from it, does not exist in EHM. According to the sample size of failure/suspension times, EHM is extended into two forms: semi-parametric and non-parametric. The semi-parametric EHM assumes a specified lifetime distribution (i.e. Weibull distribution) in the form of the baseline hazard. However, for more industry applications, due to sparse failure event data of assets, the analysis of such data often involves complex distributional shapes about which little is known. Therefore, to avoid the restrictive assumption of the semi-parametric EHM about assuming a specified lifetime distribution for failure event histories, the non-parametric EHM, which is a distribution free model, has been developed. The development of EHM into two forms is another merit of the model. A case study was conducted using laboratory experiment data to validate the practicality of the both semi-parametric and non-parametric EHMs. The performance of the newly-developed models is appraised using the comparison amongst the estimated results of these models and the other existing covariate-based hazard models. The comparison results demonstrated that both the semi-parametric and non-parametric EHMs outperform the existing covariate-based hazard models. Future research directions regarding to the new parameter estimation method in the case of time-dependent effects of covariates and missing data, application of EHM in both repairable and non-repairable systems using field data, and a decision support model in which linked to the estimated reliability results, are also identified.
Resumo:
Advances in algorithms for approximate sampling from a multivariable target function have led to solutions to challenging statistical inference problems that would otherwise not be considered by the applied scientist. Such sampling algorithms are particularly relevant to Bayesian statistics, since the target function is the posterior distribution of the unobservables given the observables. In this thesis we develop, adapt and apply Bayesian algorithms, whilst addressing substantive applied problems in biology and medicine as well as other applications. For an increasing number of high-impact research problems, the primary models of interest are often sufficiently complex that the likelihood function is computationally intractable. Rather than discard these models in favour of inferior alternatives, a class of Bayesian "likelihoodfree" techniques (often termed approximate Bayesian computation (ABC)) has emerged in the last few years, which avoids direct likelihood computation through repeated sampling of data from the model and comparing observed and simulated summary statistics. In Part I of this thesis we utilise sequential Monte Carlo (SMC) methodology to develop new algorithms for ABC that are more efficient in terms of the number of model simulations required and are almost black-box since very little algorithmic tuning is required. In addition, we address the issue of deriving appropriate summary statistics to use within ABC via a goodness-of-fit statistic and indirect inference. Another important problem in statistics is the design of experiments. That is, how one should select the values of the controllable variables in order to achieve some design goal. The presences of parameter and/or model uncertainty are computational obstacles when designing experiments but can lead to inefficient designs if not accounted for correctly. The Bayesian framework accommodates such uncertainties in a coherent way. If the amount of uncertainty is substantial, it can be of interest to perform adaptive designs in order to accrue information to make better decisions about future design points. This is of particular interest if the data can be collected sequentially. In a sense, the current posterior distribution becomes the new prior distribution for the next design decision. Part II of this thesis creates new algorithms for Bayesian sequential design to accommodate parameter and model uncertainty using SMC. The algorithms are substantially faster than previous approaches allowing the simulation properties of various design utilities to be investigated in a more timely manner. Furthermore the approach offers convenient estimation of Bayesian utilities and other quantities that are particularly relevant in the presence of model uncertainty. Finally, Part III of this thesis tackles a substantive medical problem. A neurological disorder known as motor neuron disease (MND) progressively causes motor neurons to no longer have the ability to innervate the muscle fibres, causing the muscles to eventually waste away. When this occurs the motor unit effectively ‘dies’. There is no cure for MND, and fatality often results from a lack of muscle strength to breathe. The prognosis for many forms of MND (particularly amyotrophic lateral sclerosis (ALS)) is particularly poor, with patients usually only surviving a small number of years after the initial onset of disease. Measuring the progress of diseases of the motor units, such as ALS, is a challenge for clinical neurologists. Motor unit number estimation (MUNE) is an attempt to directly assess underlying motor unit loss rather than indirect techniques such as muscle strength assessment, which generally is unable to detect progressions due to the body’s natural attempts at compensation. Part III of this thesis builds upon a previous Bayesian technique, which develops a sophisticated statistical model that takes into account physiological information about motor unit activation and various sources of uncertainties. More specifically, we develop a more reliable MUNE method by applying marginalisation over latent variables in order to improve the performance of a previously developed reversible jump Markov chain Monte Carlo sampler. We make other subtle changes to the model and algorithm to improve the robustness of the approach.
Resumo:
Recently the use of the carbon fibre reinforced polymer(CFRP) composites appears to be an excellent solution for retrofitting and strengthening of concrete and steel structures because of its superior physical and mechanical properties through the integration of other materials. However, the overall functionality and durability under various environmental conditions of the system has not yet been well documented. This paper reviews the environmental durability of CFRP strengthened system that has received only small coverage in previous review articles. Future research topics have also been indentified, such as durability of steel circular hollow section under various environmental conditions subjected to bending. Environment of interests are moisture/solution, alkalinity, creep/relaxation, fatigue, fire, thermal effects (including freeze-thaw), and ultraviolet exposure.
Resumo:
ZnO is a wide band-gap semiconductor that has several desirable properties for optoelectronic devices. With its large exciton binding energy of ~60 meV, ZnO is a promising candidate for high stability, room-temperature luminescent and lasing devices [1]. Ultraviolet light-emitting diodes (LEDs) based on ZnO homojunctions had been reported [2,3], while preparing stable p-type ZnO is still a challenge. An alternative way is to use other p-type semiconductors, ether inorganic or organic, to form heterojunctions with the naturally n-type ZnO. The crystal structure of wurtzite ZnO can be described as Zn and O atomic layers alternately stacked along the [0001] direction. Because of the fastest growth rate over the polar (0001) facet, ZnO crystals tend to grow into one-dimensional structures, such as nanowires and nanobelts. Since the first report of ZnO nanobelts in 2001 [4], ZnO nanostructures have been particularly studied for their potential applications in nano-sized devices. Various growth methods have been developed for growing ZnO nanostructures, such as chemical vapor deposition (CVD), Metal-organic CVD (MOCVD), aqueous growth and electrodeposition [5]. Based on the successful synthesis of ZnO nanowires/nanorods, various types of hybrid light-emitting diodes (LEDs) were made. Inorganic p-type semiconductors, such as GaN, Si and SiC, have been used as substrates to grown ZnO nanorods/nanowires for making LEDs. GaN is an ideal material that matches ZnO not only in the crystal structure but also in the energy band levels. However, to prepare Mg-doped p-GaN films via epitaxial growth is still costly. In comparison, the organic semiconductors are inexpensive and have many options to select, for a large variety of p-type polymer or small-molecule semiconductors are now commercially available. The organic semiconductor has the limitation of durability and environmental stability. Many polymer semiconductors are susceptible to damage by humidity or mere exposure to oxygen in the air. Also the carrier mobilities of polymer semiconductors are generally lower than the inorganic semiconductors. However, the combination of polymer semiconductors and ZnO nanostructures opens the way for making flexible LEDs. There are few reports on the hybrid LEDs based on ZnO/polymer heterojunctions, some of them showed the characteristic UV electroluminescence (EL) of ZnO. This chapter reports recent progress of the hybrid LEDs based on ZnO nanowires and other inorganic/organic semiconductors. We provide an overview of the ZnO-nanowire-based hybrid LEDs from the perspectives of the device configuration, growth methods of ZnO nanowires and the selection of p-type semiconductors. Also the device performances and remaining issues are presented.
Resumo:
Climate change and land use pressures are making environmental monitoring increasingly important. As environmental health is degrading at an alarming rate, ecologists have tried to tackle the problem by monitoring the composition and condition of environment. However, traditional monitoring methods using experts are manual and expensive; to address this issue government organisations designed a simpler and faster surrogate-based assessment technique for consultants, landholders and ordinary citizens. However, it remains complex, subjective and error prone. This makes collected data difficult to interpret and compare. In this paper we describe a work-in-progress mobile application designed to address these shortcomings through the use of augmented reality and multimedia smartphone technology.
Resumo:
Citizen Science projects are initiatives in which members of the general public participate in scientific research projects and perform or manage research-related tasks such as data collection and/or data annotation. Citizen Science is technologically possible and scientifically significant. However, although research teams can save time and money by recruiting general citizens to volunteer their time and skills to help data analysis, the reliability of contributed data varies a lot. Data reliability issues are significant to the domain of Citizen Science due to the quantity and diversity of people and devices involved. Participants may submit low quality, misleading, inaccurate, or even malicious data. Therefore, finding a way to improve the data reliability has become an urgent demand. This study aims to investigate techniques to enhance the reliability of data contributed by general citizens in scientific research projects especially for acoustic sensing projects. In particular, we propose to design a reputation framework to enhance data reliability and also investigate some critical elements that should be aware of during developing and designing new reputation systems.
Resumo:
This paper describes the socio-economic and environmental impacts of battery driven Auto Rickshaw at Rajshahi city in Bangladesh. Unemployment problem is one of the major problems in Bangladesh. The number of unemployed people in Bangladesh is 7 lacks. Auto Rickshaw reduces this unemployment problem near about 2%.In this thesis work various questions were asked to the Auto Rickshaw driver in the different point in the Rajshahi city. Then those data were calculated to know their socio economic condition. The average number of passenger per Auto Rickshaw was determined at various places of Rajshahi city (Talaimari mor, Hadir mor, Alupotti, Shaheb bazar zero point, Shodor Hospital mor, Fire brigade mor, CNB mor, Lakshipur mor, Bondo gate, Bornali, Panir tank, Rail gate, Rail Station, Bhodrar mor, Adorsha School mor). Air pollution is a great threat for human health. One of the major causes of the air pollution is the emission from various vehicles, which are running by the burning of the fossil fuel in different internal combustion(IC) engines. All the data’s about emission from various power plants were collected from internet. Then the amounts of emission (CO2, NOX and PM) from different power plant were calculated in terms of kg/km. The energy required by the Auto Rickshaw per km was also calculated. Then the histogram of emission from different vehicles in terms of kg/km was drawn. By analyzing the data and chart, it was found that, battery driven Auto Rickshaw increases income, social status, comfort and decreases unemployment problems.
Resumo:
Numerous environmental rating tools have developed around the world over the past decade or so, in an attempt to increase awareness of the impact buildings have on the environment. Whilst many of these tools can be applied across a variety of building types, the majority focus mainly on the commercial building sector. Only recently have some of the better known environmental rating tools become adaptable to the land development sector, where arguably the most visible environmental impacts are made. EnviroDevelopment is one such tool that enables rating of residential land development in Australia. This paper seeks to quantify the environmental benefits achieved by the environmental rating tool EnviroDevelopment, using data from its certified residential projects across Australia. This research will identify the environmental gains achieved in the residential land development sector that can be attributed to developers aspiring to gain certification under this rating tool.
Resumo:
Chemical treatments of kaolins to produce nanocrystalline or "X-ray amorphous", stable aluminosilicates with variable - but reproducible - types of micro- and meso-porosity have been developed. These materials show cation exchange capacities and surface area values significantly higher (ranging from 10x to 100x) than kaolin and show good acid resistance to pH~3.0. The combination of these properties offers strong potential for many new applications of kaolin-derived materials in large worldwide markets such as environmental remediation and catalysis. Kaolin amorphous derivative (KAD) is well-suited to removal of many toxic metals down to ppb range from acid mine drainage. Engineering development trials of the KAD manufacturing process and the utilisation of KAD in polluted waters such as acid mine drainage indicates that scale-up from bench-scale is not a barrier to market entry.
Resumo:
Changing environments present a number of challenges to mobile robots, one of the most significant being mapping and localisation. This problem is particularly significant in vision-based systems where illumination and weather changes can cause feature-based techniques to fail. In many applications only sections of an environment undergo extreme perceptual change. Some range-based sensor mapping approaches exploit this property by combining occasional place recognition with the assumption that odometry is accurate over short periods of time. In this paper, we develop this idea in the visual domain, by using occasional vision-driven loop closures to infer loop closures in nearby locations where visual recognition is difficult due to extreme change. We demonstrate successful map creation in an environment in which change is significant but constrained to one area, where both the vanilla CAT-Graph and a Sum of Absolute Differences matcher fails, use the described techniques to link dissimilar images from matching locations, and test the robustness of the system against false inferences.
Resumo:
Large scale sugarcane bagasse storage in uncovered stockpiles has the potential to result in adverse impacts on the environment and surrounding communities through hazards associated with nuisance dust, groundwater seepage, spontaneous combustion and generation of contaminated leachates. Managing these hazards will assist in improved health and safety outcomes for factory staff and reduced potential environmental impacts on surrounding communities. Removal of the smaller fibres (pith) from bagasse prior to stockpiling reduced the dust number of bagasse by 50% and modelling suggests peak ground level PM10 dust emissions would reduce by 70%. Depithed bagasse has much lower water holding capacity (~43%) than whole bagasse. This experimental and modelling study investigated the physical properties of depithed and whole bagasse. Dust dispersion modelling was undertaken to determine the likely effects associated with storage of whole and depithed sugarcane bagasse.
Resumo:
Today, there are growing concerns about the presence of environmental pollutants in many parts of the world. In particular, a lot of attention has been drawn to the levels of water and soil contaminants (de Paiva et al., 2008). The majority of these contaminants consist of NOCs (non-ionic organic compounds) and can enter our waterways through industrial activities, mining operations, crop and animal production, waste disposal and accidental leakage (de Paiva et al., 2008; Park et al., 2011). Therefore, there is an increased interest in the synthesis of new materials that can be used to remove potentially carcinogenic and toxic water contaminants. Smectite type organoclays are widely used in numerous applications, such as sorbent agents for environmental remediation, due to their unique properties (Jiunn-Fwu et al., 1990; Sheng et al., 1996; Zhou et al., 2007; Bektas et al., 2011; Park et al., 2011). This investigation focuses on beidellite (SBId-1), which belongs to the smectite clay family. Their properties include high cation exchange capacity (CEC), swelling properties, porous, high surface area and consequential strong adsorption/absorption capacity (Xi et al., 2007). However, swelling clays in general are not an effective sorbent agent in nature due to their hydrophilic properties. The hydrophilic properties of the clay can be changed to organophilic by intercalating a cationic surfactant. Many applications of organoclays are strongly dependent on their structural properties and hence, a better understanding of the configuration and structural change of organoclay is crucial. Organoclays were synthesised through ion exchange of 21CODTMA (MW: 392.5 g mol-1) and characterised using XRD and FTIR spectroscopy. This study investigates the structural and conformational changes of beidellite intercalated with octadecyltrimethylammonium bromide.