954 resultados para enthalpy of fusion
Resumo:
Retroelements are important evolutionary forces but can be deleterious if left uncontrolled. Members of the human APOBEC3 family of cytidine deaminases can inhibit a wide range of endogenous, as well as exogenous, retroelements. These enzymes are structurally organized in one or two domains comprising a zinc-coordinating motif. APOBEC3G contains two such domains, only the C terminal of which is endowed with editing activity, while its N-terminal counterpart binds RNA, promotes homo-oligomerization, and is necessary for packaging into human immunodeficiency virus type 1 (HIV-1) virions. Here, we performed a large-scale mutagenesis-based analysis of the APOBEC3G N terminus, testing mutants for (i) inhibition of vif-defective HIV-1 infection and Alu retrotransposition, (ii) RNA binding, and (iii) oligomerization. Furthermore, in the absence of structural information on this domain, we used homology modeling to examine the positions of functionally important residues and of residues found to be under positive selection by phylogenetic analyses of primate APOBEC3G genes. Our results reveal the importance of a predicted RNA binding dimerization interface both for packaging into HIV-1 virions and inhibition of both HIV-1 infection and Alu transposition. We further found that the HIV-1-blocking activity of APOBEC3G N-terminal mutants defective for packaging can be almost entirely rescued if their virion incorporation is forced by fusion with Vpr, indicating that the corresponding region of APOBEC3G plays little role in other aspects of its action against this pathogen. Interestingly, residues forming the APOBEC3G dimer interface are highly conserved, contrasting with the rapid evolution of two neighboring surface-exposed amino acid patches, one targeted by the Vif protein of primate lentiviruses and the other of yet-undefined function.
Resumo:
Fifty-eight infants and children with a severe subglottic stenosis underwent a partial cricotracheal resection with primary thyrotracheal anastomosis. There were 2 grade II, 40 grade III, and 16 grade IV stenoses according to the Myer-Cotton classification. A 100% subglottic lumen was formed in 34 cases and a better than 80% lumen in 23 cases. Fifty-four of the 58 (93%) patients are presently decannulated; one patient sustained a complete restenosis and three patients with a better than 80% subglottic airway still await decannulation for the following reasons: severe tracheomalacia, bilateral cricoarytenoïd joint fixation and laryngeal malformation with fusion of the vocal cords in each case respectively. Forty-four patients have no exercise intolerance, 8 live fully normally but present a slight exertional dyspnea, one patient with a laryngeal malformation is decannulated but suffers from a severe exertional dyspnea, and 4 patients are still not decannulated. The voice is normal in 20 cases, a slight dysphonia is present in 17, a moderate to severe dysphonia in another 17 and 4 patients are still not decannulated.
Resumo:
Conjugative transfer of the integrative and conjugative element ICEclc in the bacterium Pseudomonas knackmussii is the consequence of a bistable decision taken in some 3% of cells in a population during stationary phase. Here we study the possible control exerted by the stationary phase sigma factor RpoS on the bistability decision. The gene for RpoS in P. knackmussii B13 was characterized, and a loss-of-function mutant was produced and complemented. We found that, in absence of RpoS, ICEclc transfer rates and activation of two key ICEclc promoters (P(int) and P(inR)) decrease significantly in cells during stationary phase. Microarray and gene reporter analysis indicated that the most direct effect of RpoS is on P(inR), whereas one of the gene products from the P(inR)-controlled operon (InrR) transmits activation to P(int) and other ICEclc core genes. Addition of a second rpoS copy under control of its native promoter resulted in an increase of the proportion of cells expressing the P(int) and P(inR) promoters to 18%. Strains in which rpoS was replaced by an rpoS-mcherry fusion showed high mCherry fluorescence of individual cells that had activated P(int) and P(inR), whereas a double-copy rpoS-mcherry-containing strain displayed twice as much mCherry fluorescence. This suggested that high RpoS levels are a prerequisite for an individual cell to activate P(inR) and thus ICEclc transfer. Double promoter-reporter fusions confirmed that expression of P(inR) is dominated by extrinsic noise, such as being the result of cellular variability in RpoS. In contrast, expression from P(int) is dominated by intrinsic noise, indicating it is specific to the ICEclc transmission cascade. Our results demonstrate how stochastic noise levels of global transcription factors can be transduced to a precise signaling cascade in a subpopulation of cells leading to ICE activation.
Resumo:
The root-colonizing bacterium Pseudomonas fluorescens CHA0 was used to construct an oxygen-responsive biosensor. An anaerobically inducible promoter of Pseudomonas aeruginosa, which depends on the FNR (fumarate and nitrate reductase regulation)-like transcriptional regulator ANR (anaerobic regulation of arginine deiminase and nitrate reductase pathways), was fused to the structural lacZ gene of Escherichia coli. By inserting the reporter fusion into the chromosomal attTn7 site of P. fluorescens CHA0 by using a mini-Tn7 transposon, the reporter strain, CHA900, was obtained. Grown in glutamate-yeast extract medium in an oxystat at defined oxygen levels, the biosensor CHA900 responded to a decrease in oxygen concentration from 210 x 10(2) Pa to 2 x 10(2) Pa of O(2) by a nearly 100-fold increase in beta-galactosidase activity. Half-maximal induction of the reporter occurred at about 5 x 10(2) Pa. This dose response closely resembles that found for E. coli promoters which are activated by the FNR protein. In a carbon-free buffer or in bulk soil, the biosensor CHA900 still responded to a decrease in oxygen concentration, although here induction was about 10 times lower and the low oxygen response was gradually lost within 3 days. Introduced into a barley-soil microcosm, the biosensor could report decreasing oxygen concentrations in the rhizosphere for a 6-day period. When the water content in the microcosm was raised from 60% to 85% of field capacity, expression of the reporter gene was elevated about twofold above a basal level after 2 days of incubation, suggesting that a water content of 85% caused mild anoxia. Increased compaction of the soil was shown to have a faster and more dramatic effect on the expression of the oxygen reporter than soil water content alone, indicating that factors other than the water-filled pore space influenced the oxygen status of the soil. These experiments illustrate the utility of the biosensor for detecting low oxygen concentrations in the rhizosphere and other soil habitats.
Resumo:
Intraocular inflammation has been recognized as a major factor leading to blindness. Because tumor necrosis factor-alpha (TNF-alpha) enhances intraocular cytotoxic events, systemic anti-TNF therapies have been introduced in the treatment of severe intraocular inflammation, but frequent re-injections are needed and are associated with severe side effects. We have devised a local intraocular nonviral gene therapy to deliver effective and sustained anti-TNF therapy in inflamed eyes. In this study, we show that transfection of the ciliary muscle by plasmids encoding for three different variants of the p55 TNF-alpha soluble receptor, using electrotransfer, resulted in sustained intraocular secretion of the encoded proteins, without any detection in the serum. In the eye, even the shorter monomeric variant resulted in efficient neutralization of TNF-alpha in a rat experimental model of endotoxin-induced uveitis, as long as 3 months after transfection. A subsequent downregulation of interleukin (IL)-6 and iNOS and upregulation of IL-10 expression was observed together with a decreased rolling of inflammatory cells in anterior segment vessels and reduced infiltration within the ocular tissues. Our results indicate that using a nonviral gene therapy strategy, the local self-production of monomeric TNF-alpha soluble receptors induces a local immunomodulation enabling the control of intraocular inflammation.
Resumo:
Using genetically matched azole-susceptible (AS) and azole-resistant (AR) clinical isolates of Candida albicans, we recently demonstrated that CDR1 overexpression in AR isolates is due to its enhanced transcriptional activation and mRNA stability. This study examines the molecular mechanisms underlying enhanced CDR1 mRNA stability in AR isolates. Mapping of the 3' untranslated region (3' UTR) of CDR1 revealed that it was rich in adenylate/uridylate (AU) elements, possessed heterogeneous polyadenylation sites, and had putative consensus sequences for RNA-binding proteins. Swapping of heterologous and chimeric lacZ-CDR1 3' UTR transcriptional reporter fusion constructs did not alter the reporter activity in AS and AR isolates, indicating that cis-acting sequences within the CDR1 3' UTR itself are not sufficient to confer the observed differential mRNA decay. Interestingly, the poly(A) tail of the CDR1 mRNA of AR isolates was approximately 35-50 % hyperadenylated as compared with AS isolates. C. albicans poly(A) polymerase (PAP1), responsible for mRNA adenylation, resides on chromosome 5 in close proximity to the mating type-like (MTL) locus. Two different PAP1 alleles, PAP1-a/PAP1-alpha, were recovered from AS (MTL-a/MTL-alpha), while a single type of PAP1 allele (PAP1-alpha) was recovered from AR isolates (MTL-alpha/MTL-alpha). Among the heterozygous deletions of PAP1-a (Deltapap1-a/PAP1-alpha) and PAP1-alpha (PAP1-a/Deltapap1-alpha), only the former led to relatively enhanced drug resistance, to polyadenylation and to transcript stability of CDR1 in the AS isolate. This suggests a dominant negative role of PAP1-a in CDR1 transcript polyadenylation and stability. Taken together, our study provides the first evidence, to our knowledge, that loss of heterozygosity at the PAP1 locus is linked to hyperadenylation and subsequent increased stability of CDR1 transcripts, thus contributing to enhanced drug resistance.
Resumo:
The nuclear factor I (NFI) family consists of sequence-specific DNA-binding proteins that activate both transcription and adenovirus DNA replication. We have characterized three new members of the NFI family that belong to the Xenopus laevis NFI-X subtype and differ in their C-termini. We show that these polypeptides can activate transcription in HeLa and Drosophila Schneider line 2 cells, using an activation domain that is subdivided into adjacent variable and subtype-specific domains each having independent activation properties in chimeric proteins. Together, these two domains constitute the full NFI-X transactivation potential. In addition, we find that the X. laevis NFI-X proteins are capable of activating adenovirus DNA replication through their conserved N-terminal DNA-binding domains. Surprisingly, their in vitro DNA-binding activities are specifically inhibited by a novel repressor domain contained within the C-terminal part, while the dimerization and replication functions per se are not affected. However, inhibition of DNA-binding activity in vitro is relieved within the cell, as transcriptional activation occurs irrespective of the presence of the repressor domain. Moreover, the region comprising the repressor domain participates in transactivation. Mechanisms that may allow the relief of DNA-binding inhibition in vivo and trigger transcriptional activation are discussed.
Resumo:
Recently, corticosteroid hormone-induced factor (CHIF) and the gamma-subunit, two members of the FXYD family of small proteins, have been identified as regulators of renal Na,K-ATPase. In this study, we have investigated the tissue distribution and the structural and functional properties of FXYD7, another family member which has not yet been characterized. Expressed exclusively in the brain, FXYD7 is a type I membrane protein bearing N-terminal, post-translationally added modifications on threonine residues, most probably O-glycosylations that are important for protein stabilization. Expressed in Xenopus oocytes, FXYD7 can interact with Na,K-ATPase alpha 1-beta 1, alpha 2-beta 1 and alpha 3-beta 1 but not with alpha-beta 2 isozymes, whereas, in brain, it is only associated with alpha 1-beta isozymes. FXYD7 decreases the apparent K(+) affinity of alpha 1-beta 1 and alpha 2-beta 1, but not of alpha 3-beta1 isozymes. These data suggest that FXYD7 is a novel, tissue- and isoform-specific Na,K-ATPase regulator which could play an important role in neuronal excitability.
Resumo:
The synthesis of poly(RboP), the main Bacillus subtilis W23 teichoic acid, is encoded by tarDF-tarABIJKL operons, the latter being controlled by two promoters designated PtarA-int and PtarA-ext. Analysis by lacZ fusions reveals that PtarA-int activity exhibits sharp increases at the beginning and end of the transition between exponential and stationary growth phase. As confirmed by mRNA quantification, these increases are mediated by ECF sigma factors sigmaX and sigmaM respectively. In liquid media, strain W23 sigX sigM double mutants experience serious difficulties in the transition and stationary growth phases. Inactivation of sigmaX- and sigmaM-controlled regulons, which precludes transcription from PtarA-int, leads to (i) delays in chromosome segregation and septation and (ii) a transient loss of up to 30% of the culture OD or lysis. However, specific inactivation of PtarA-int, leading mainly to a shortage of poly(RboP), does not affect growth while, nevertheless, interfering with normal septation, as revealed by electron microscopy. The different sigM transcription in strains W23 and 168 is discussed. In W23, expression of tarA and sigM, which is shown to control divIC, is inversely correlated with growth rate, suggesting that the sigM regulon is involved in the control of cell division.
Resumo:
Whereas interactions between the TCRalpha beta and self MHC:peptide complexes are clearly required for positive selection of mature CD4(+) and CD8(+) T cells during intrathymic development, the role of self or foreign ligands in maintaining the peripheral T cell repertoire is still controversial. In this report we have utilized keratin 14-beta2-microglobulin (K14-beta2m)-transgenic mice expressing beta2m-associated ligands exclusively on thymic cortical epithelial cells to address the possible influence of TCR:ligand interactions in peripheral CD8(+) T cell homeostasis. Our data indicate that CD8(+) T cells in peripheral lymphoid tissues are present in normal numbers in the absence of self MHC class I:peptide ligands. Surprisingly, however, steady state homeostasis of CD8(+) T cells in the intestinal epithelium is severely affected by the absence of beta2m-associated ligands. Indeed TCRalpha beta(+) IEL subsets expressing CD8alpha beta or CD8alpha alpha are both dramatically reduced in K14-beta2m mice, suggesting that the development, survival or expansion of CD8(+) IEL depends upon interaction of the TCR with MHC class I:peptide or other beta2m-associated ligands elsewhere than on thymic cortical epithelium. Collectively, our data reveal an unexpected difference in the regulation of CD8(+) T cell homeostasis by beta2m-associated ligands in the intestine as compared to peripheral lymphoid organs.
Resumo:
The t(8;21) chromosomal translocation activates aberrant expression of the AML1-ETO (AE) fusion protein and is commonly associated with core binding factor acute myeloid leukaemia (CBF AML). Combining a conditional mouse model that closely resembles the slow evolution and the mosaic AE expression pattern of human t(8;21) CBF AML with global transcriptome sequencing, we find that disease progression was characterized by two principal pathogenic mechanisms. Initially, AE expression modified the lineage potential of haematopoietic stem cells (HSCs), resulting in the selective expansion of the myeloid compartment at the expense of normal erythro- and lymphopoiesis. This lineage skewing was followed by a second substantial rewiring of transcriptional networks occurring in the trajectory to manifest leukaemia. We also find that both HSC and lineage-restricted granulocyte macrophage progenitors (GMPs) acquired leukaemic stem cell (LSC) potential being capable of initiating and maintaining the disease. Finally, our data demonstrate that long-term expression of AE induces an indolent myeloproliferative disease (MPD)-like myeloid leukaemia phenotype with complete penetrance and that acute inactivation of AE function is a potential novel therapeutic option.
Resumo:
BACKGROUND: Within the frame of a twinning programme with Nicaragua, The La Mascota project, we evaluated in our study the contribution of cytogenetic characterization of acute lymphoblastic leukemia (ALL) as prognostic factor compared to clinical, morphological, and immunohistochemical parameters. METHODS: All patients with ALL treated at the only cancer pediatric hospital in Nicaragua during 2006 were studied prospectively. Diagnostic immunophenotyping was performed locally and bone marrow or blood samples were sent to the cytogenetic laboratory of Zurich for fluorescence in situ hybridization (FISH) analysis and G-banding. RESULTS: Sixty-six patients with ALL were evaluated. Their mean age at diagnosis was 7.3 years, 31.8% were >or=10 years. Thirty-four patients (51.5%) presented with hyperleucocytosis >or=50 x 10(9)/L, 45 (68.2%) had hepatosplenomegaly. Immunophenotypically 63/66 patients (95%) had a B-precursor, 2 (3%) a T- and 1 (1.5%) a B-mature ALL. FISH analysis demonstrated a TEL/AML1 fusion in 9/66 (14%), BCR/ABL fusion in 1 (1.5%), MLL rearrangement in 2 (3.1%), iAMP21 in 2 (3.1%), MYC rearrangement in 1 (1.5%), and high-hyperdiploidy in 16 (24%). All patients but two with TEL/AML1 fusion and high-hyperdiploidy were clinically and hematologically in the standard risk group whereas those with poor cytogenetic factors had clinical high-risk features and were treated intensively. CONCLUSIONS: Compared to Europe, the ALL population in Nicaragua is older, has a higher proportion of poor prognostic clinical and hematological features and receives more intensive treatment, while patients with TEL/AML1 translocations and high-hyperdiploidy are clinically in the standard risk group. Cytogenetics did not contribute as an additional prognostic factor in this setting.
Resumo:
Thermal shocks induce changes in the nuclear phenotypes that correspond to survival (heterochromatin decondensation, nuclear fusion) or death (apoptosis, necrosis) responses in the Malpighian tubules of Panstrongylus megistus. Since thermal tolerance increased survival and molting rate in this species following sequential shocks, we investigated whether changes in nuclear phenotypes accompanied the insect survival response to sequential thermal shocks. Fifth instar nymphs were subjected to a single heat (35 or 40°C, 1 h) or cold (5 or 0°C, 1 h) shock and then subjected to a second shock for 12 h at 40 or 0°C, respectively, after 8, 18, 24 and 72 h at 28°C (control temperature). As with specimen survival, sequential heat and cold shocks induced changes in frequency of the mentioned nuclear phenotypes although their patterns differed. The heat shock tolerance involved decrease in apoptosis simultaneous to increase in cell survival responses. Sequential cold shocks did not involve cell/nuclear fusion and even elicited increase in necrosis with advancing time after shocks. The temperatures of 40 and 0ºC were more effective than the temperatures of 35 and 5ºC in eliciting the heat and cold shock tolerances, respectively, as shown by cytological analysis of the nuclear phenotypes. It is concluded that different sequential thermal shocks can trigger different mechanisms of cellular protection against stress in P. megistus, favoring the insect to adapt to various ecotopes.
Resumo:
BACKGROUND: Thy-1 is an abundant neuronal glycoprotein in mammals. Despite such prevalence, Thy-1 function remains largely obscure in the absence of a defined ligand. Astrocytes, ubiquitous cells of the brain, express a putative Thy-1 ligand that prevents neurite outgrowth. In this paper, a ligand molecule for Thy-1 was identified, and the consequences of Thy-1 binding for astrocyte function were investigated. RESULTS: Thy-1 has been implicated in cell adhesion and, indeed, all known Thy-1 sequences were found to contain an integrin binding, RGD-like sequence. Thy-1 interaction with beta3 integrin on astrocytes was demonstrated in an adhesion assay using a thymoma line (EL-4) expressing high levels of Thy-1. EL-4 cells bound to astrocytes five times more readily than EL-4(-f), control cells lacking Thy-1. Binding was blocked by either anti-Thy-1 or anti-beta3 antibodies, by RGD-related peptides, or by soluble Thy-1-Fc chimeras. However, neither RGE/RLE peptides nor Thy-1(RLE)-Fc fusion protein inhibited the interaction. Immobilized Thy-1-Fc, but not Thy-1(RLE)-Fc fusion protein supported the attachment and spreading of astrocytes in a Mn(2+)-dependent manner. Binding to Thy-1-Fc was inhibited by RGD peptides. Moreover, vitronectin, fibrinogen, denatured collagen (dcollagen), and a kistrin-derived peptide, but not fibronectin, also mediated Mn(2+)-dependent adhesion, suggesting the involvement of beta3 integrin. The addition of Thy-1 to matrix-bound astrocytes induced recruitment of paxillin, vinculin, and focal adhesion kinase (FAK) to focal contacts and increased tyrosine phosphorylation of proteins such as p130(Cas) and FAK. Furthermore, astrocyte binding to immobilized Thy-1-Fc alone was sufficient to promote focal adhesion formation and phosphorylation on tyrosine. CONCLUSIONS: Thy-1 binds to beta3 integrin and triggers tyrosine phosphorylation of focal adhesion proteins in astrocytes, thereby promoting focal adhesion formation, cell attachment, and spreading.
Resumo:
SummaryResearch projects presented in this thesis aimed to investigate two major aspects of the arenaviruses life cycle in the host cell: viral entry and the biosynthesis of the viral envelope glycoprotein.Old World arenaviruses (OWAV), such as Lassa virus (LASV) and lymphocytic choriomeningitis virus (LCMV), attach to the cell by binding to their receptor, alpha-dystroglycan. Virions are then internalized by a largely unknown pathway of endocytosis and delivered to the late endosome/lysosome where fusion occurs at low pH. In the major project of my thesis, we sought to identify cellular factors involved in OWAV cell entry. Our work indicates that OWAV cell entry requires microtubular transport and a functional multivesicular body (MVB) compartment. Infection indeed depends on phosphatidyl inositol 3-kinase (PI3K) activity and lysobisphosphatidic acid (LBPA), a lipid found in membranes of intraluminal vesicles (ILVs) of the MVB. We further found a requirement of factors that are part of the endosomal sorting complex required for transport (ESCRT), involved in the formation of ILVs. This suggests an ESCRT-mediated sorting of virus- receptor complex during the entry process.During viral replication, biosynthesis of viral glycoprotein takes place in the endoplasmic reticulum (ER) of the host cell. When protein load exceeds the folding capacity of the ER, the accumulation of unfolded proteins is sensed by three ER resident proteins, activating transcription factor 6 (ATF6), inositol-requiring enzyme 1 (IRE1) and PKR-like ER kinase (PERK), whose signaling induces the cellular unfolded protein response (UPR). Our results indicate that acute LCMV infection transiently induces the activation of the ATF6 branch of the UPR, whereas the PERK, and IRE1 axis of UPR are neither triggered nor blocked during infection. Our data also demonstrate that activation of ATF6 pathway is required for optimal viral replication during acute infection.The formation of the mature, fusion-active form of arenaviruses glycoproteins requires proteolytic cleavage mediated by the cellular protease subtilisin kexin isozyme-1 (SKI-l)/site-l protease (SIP). We show that targeting the SKI-1/S1P enzymatic activity with specific inhibitors is a powerful strategy to block arenaviruses productive infection. Moreover, characterization of protease function highlights differences in processing between cellular and viral substrates, opening new possibilities in term of drug development against human pathogenic arenaviruses.RésuméLes projets de recherche présentés dans cette thèse visaient à étudier deux aspects du cycle de vie des arenavirus: l'entrée du virus dans la cellule hôte et la biosynthèse de la glycoprotéine durant la réplication virale.Les arenavirus du vieux monde (OWAV), tels que le virus de Lassa (LASV) et le virus de la chorioméningite lymphocytaire (LCMV) s'attachent à la cellule hôte en se liant à leur récepteur, l'alpha-dystroglycane. Les virions sont ensuite intemalisés par une voie d'endocytose inconnue et livrés à l'endosome tardif/lysosome, où le pH acide permet la fusion entre l'enveloppe virale et la membrane du compartiment. Le projet principal de ma thèse consistait à identifier les facteurs cellulaires impliqués dans l'entrée des OWAV dans la cellule hôte. Nos résultats indiquent que l'entrée des OWAV nécessite le transport microtubulaire et la présence d'un corps multivésiculaire (MVB) fonctionnel. L'infection dépend en effet de l'activité de phosphatidyl inositol 3-kinase (PI3K) et de lysobisphosphatidic acid (LBPA), un lipide présent dans les membranes des vésicules intraluminales (ILVs) du MVB. Nous avons également trouvé l'implication de facteurs constituant l'endosomal sorting complex required for sorting (ESCRT) qui joue un rôle dans la formation des ILVs. Ces donnés suggèrent l'incorporation du complexe virus-récepteur dans des ILVs durant le processus d'entrée.Lors de la réplication virale, la biosynthèse de la glycoprotéine virale a lieu dans le réticulum endoplasmique (ER) de la cellule hôte. Lorsque la charge de protéines nouvellement synthétisées excède la capacité de pliage des protéines dans le ER, l'accumulation de protéines mal pliées est détectée par trois facteurs: activating transcription factor 6 (ATF6), inositol-requiring enzyme 1 (IRE1) et PKR-like ER kinase (PERK). Leur signalisation constitue la réponse cellulaire face aux protéines mal pliées (UPR). Nos résultats montrent que l'infection aiguë avec LCMV induit transitoirement l'activation de la voie de signalisation ATF6 alors que les axes PERK et IRE1 de l'UPR ne sont ni induits ni bloqués pendant l'infection. Nos données prouvent également que l'activation de la voie ATF6 est nécessaire à une réplication virale optimale lors de l'infection aiguë avec LCMV.La maturation des glycoprotéines des arenavirus nécessite un clivage protéolytique par la protéase cellulaire subtilisin kexin isozyme-1 (SKI-l)/site-l protease (SIP). Nous avons démontré que le ciblage de l'activité enzymatique de SKI-1/SIΡ avec des inhibiteurs spécifiques est une stratégie prometteuse pour bloquer l'infection par les arenavirus. La caractérisation du mécanisme d'action de la protéase a, par ailleurs, révélé des différences au niveau du clivage entre les substrats cellulaires et viraux, ce qui ouvre de nouvelles perspectives en terme de développement de médicaments contre les arenavirus pathogènes pour l'homme.