891 resultados para electric power generation
Resumo:
The mobile water hyacinth, which was produced in growth zones, especially Murchison Bay, was mainly exported to three sheltered storage bays (Thruston, Hannington and Waiya). Between 1996 and May 1998, the mobile form of water hyacinth occupied about 800 ha in Thruston Bay, 750 ha in Hannington Bay and 140 ha in Waiya Bay). Biological control weevils and other factors, including localised nutrient depletion, weakened the weed that was confined to the bays and it sunk around October 1998. The settling to the bottom of such huge quantities of organic matter its subsequent decomposition and the debris from this mass was likely to have environmental impacts on biotic communities (e.g. fish and invertebrate), physico-chemical conditions (water quality), and on socio-economic activities (e.g. at fish landings, water abstraction, and hydro-power generation points). Sunken water. hyacinth debris could also affect nutrient levels in the water column and lead to reduction in the content of dissolved oxygen. The changes in nutrient dynamics and oxygen levels could affect algal productivity, invertebrate composition and fish communities. Socio-economic impacts of dead sunken weed were expected from debris deposited along the shoreline especially at fish landings, water abstraction and hydropower generation points. Therefore, environmental impact assessment studies were carried out between 1998 and 2002 in selected representative zones of Lake Victoria to identify the effects of the sunken water hyacinth biomass
Resumo:
The recent developments in SiC PiN diode research mean that physics-based models that allow accurate, rapid prediction of switching and conduction performance and resulting converter losses will soon be required. This is especially the case given the potential for very high voltage converters to be used for enabling distributed and renewable power generation. In this work an electro-thermal compact model of a 4.5 kV silicon carbide PiN diode has been developed for converter loss modelling in Simulink. Good matching of reverse recovery has been achieved between 25 and 200 °C. The I-V characteristics of the P+ anode contact have been shown to be significant in obtaining good matching for the forward characteristics of the diode, requiring further modelling work in this area. © 2009 IEEE.
Resumo:
High Temperature superconductors are able to carry very high current densities, and thereby sustain very high magnetic fields. There are many projects which use the first property and these have concentrated on power generation, transmission and utilization, however there are relatively few which are currently exploiting the ability to sustain high magnetic fields. There are two main reasons for this: high field wound magnets can and have been made from both BSCCO and YBCO but currently their cost is much higher than the alternative provided by low Tc materials such as Nb3Sn and NbTi. An alternative form of the material is the bulk form which can be magnetized to high fields and using flux pumping this can be done in situ. This paper explores some of the applications of bulk superconductors and describes methods of producing field patterns using the highly uniform magnetic fields required for MRI and accelerator magnets as the frame of reference. The patterns are not limited to uniform fields and it is entirely possible to produce a field varying sinusoidally in space such as would be required for a motor or a generator. The scheme described in this paper describes a dipole magnet such as is found in an accelerator magnet. The tunnel is 30 × 50 × 1000 mm and we achieve a uniformity of better than 200 ppm over the 1000 mm length and better than 1 ppm over the central 500 mm region. The paper presents results for both the overall uniformity and the integrated uniformity which is 302 ppm over the 1000 mm length. © 2010 IEEE.
Resumo:
Consequent on the great emphasis given to irrigation, power generation and flood control, several river valley reservoirs have been formed. The fact that these reservoirs support a fairly rich fishery potential needs no special mention. The total reservoir water area in the country is 6.4 lakh h.a. (16 lakh acres) and the yield is 5 to 8 kgm/h. a. in certain reservoirs, rising up to 40 kgm/h.a. in some of the highly productive ones.
Resumo:
Fishing vessels where electric power supply from alternator is available to operate various auxiliaries located anywhere in the vessel, the small crafts, which constitute over 95% of the total fishing crafts operating in India, are entirely dependent on one source of power, i. e. the main diesel engine. To utilize this source of motive power to operate the winches and other auxiliaries, mechanical drive involving shafts, bearings and pulleys, is inconvenient. This paper presents basic advantages of hydraulic system over mechanical drive.
Resumo:
The rapid proliferation and extensive spread of water hyacinth Eichhornia crassipes (Mart) Solms in the highland lakes of the Nile Basin within less than 15 years of introduction into the basin in the 1980s pauses potential environmental and social economic menace if the noxious weed is not controlled soon. The water weed has spread all round Lake Victoria and, in Uganda where infes tation is mos t severe, water hyacinth estimated at 1,330,000 ton smothers over 2,000 ha of the lakeshore (August,1994). Lake Kyoga which already constantly supplies River Nile with the weed is infested with over 570 ha, while over 80% of the river course in Uganda is fringed on either side with an average width of about 5m of water hyacinth. As the impact of infestation with water hyacinth on water quality and availability, transportation by water, fishing activities, fisheries ecology, hydro-power generation etc becomes clear in Uganda, serious discussion is under way on how to control and manage the noxious weed. This paper pauses some of the questions being asked regarding the possible application of mechanical and chemical means to control the water weed.Uganda has already initiated the use of biological control of water hyacinth on Lake Kyoga with a strategy to use two weevils namely Neochetinabruchi and Neochetina eichhorniae. The strategy to build capacity and infrastructure for mass multiplication and deployment of biological control of the weevils in the field developed in Uganda by the Fisheries Research Insti tu te (FIRI) and the Namulonge Agricultural and Animal production Research Insti tute (NAARI) is proposed in outline for evaluation. Plans to deploy this strategy on lake Kyoga are under way
Resumo:
Analyses of photovoltaic power generation based on Lyapunov's theorems are presented. The characteristics of the photovoltaic module and the power conditioning unit are analyzed in order to establish energy functions that assess the stability of solutions and define safe regions of operation. Furthermore, it is shown that grid-connected photovoltaic modules driven at maximum power may become unstable under normal grid transients. In such cases, stability can be maintained by allowing an operational margin defined as the energy difference between the stable and the unstable solutions of the system. Simulations show that modules cope well with grid transients when a sufficiently large margin is used.
Resumo:
This paper proposed a novel control scheme for operating the Single Phase Brushless Doubly-Fed Machine (SPB) based on Stator-Flux-Oriented control algorithm. The SPB is a new type of Brushless Doubly-Fed Machine (BDFM) which shows a potential in applications which require adjustable speed such as Wind Power generation and speed adjustable Drive. The SPB can be applied to single-phase power system and the lower cost of the SPB makes the SPB suitable for low-rated power conversion applications. This paper develops the control scheme of the SPB with explicit mathematical analysis and block diagram of the controller. Experimental verification is also given. © 2011 IEEE.
Resumo:
Nuclear power generation offers a reliable, low-impact and large-scale alternative to fossil fuels. However, concerns exist over the safety and sustainability of this method of power production, and it remains unpopular with some governments and pressure groups throughout the world. Fast thorium fuelled accelerator-driven sub-critical reactors (ADSRs) offer a possible route to providing further re-assurance regarding these concerns on account of their properties of enhanced safety through sub-critical operation combined with reduced actinide waste production from the thorium fuel source. The appropriate sub-critical margin at which these reactors should operate is the subject of continued debate. Commercial interests favour a small sub-critical margin in order to minimise the size of the accelerator needed for a given power output, whilst enhanced safety would be better satisfied through larger sub-critical margins to further minimise the possibility of a criticality excursion. Against this background, this paper examines some of the issues affecting reactor safety inherent within thorium fuel sources resulting from the essential Th90232→Th90233→Pa91233→U92233 breeding chain. Differences in the decay half-lives and fission and capture cross-sections of 233Pa and 233U can result in significant changes in the reactivity of the fuel following changes in the reactor power. Reactor operation is represented using a homogeneous lumped fast reactor model that can simulate the evolution of actinides and reactivity variations to first-order accuracy. The reactivity of the fuel is shown to increase significantly following a loss of power to the accelerator. Where the sub-critical operating margins are small this can result in a criticality excursion unless some form of additional intervention is made, for example through the insertion of control rods. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
The Brushless Doubly-Fed Induction Generator (BDFIG) shows commercial promise for wind power generation due to its lower cost and higher reliability compared to the Doubly-Fed Induction Generator (DFIG). For the purposes of commercialisation, the BDFIG must meet grid codes at all times. Nowadays, all new wind generators have to ride through certain grid faults, and the Low-Voltage Ride Through (LVRT) capability has become one of the most important points on which to assess the performance a generator. This paper, for the first time, proposes a control scheme to enable the the BDFIG to ride through symmetrical voltage dips. Simulation results and experimental results on a prototype BDFIG show that the proposed scheme gives the capability to ride through low voltage faults. © 2011 IEEE.
Resumo:
Superconducting Fault Current Limiters (SFCLs) are able to reduce fault currents to an acceptable value, reducing potential mechanical and thermal damage and allowing more flexibility in an electric power system's design. Due to limitations in current YBCO thin film manufacturing techniques, it is necessary to connect a number of thin films in different series and parallel configurations in order to realise a practical SFCL for electric power system applications. The amount of resistance generated (i.e. the degree of current limitation), the characteristics of the S-N transition, and the time at which they operate is different depending on their comparative characteristics. However, it is desirable for series-connected thin films to have an operating time difference as small as possible to avoid placing an excess burden on certain thin films. The role of a parallel resistance, along with the influence of thin film characteristics, such as critical current (Ic), are discussed in regards to the design of SFCLs using YBCO thin films. © 2008 IOP Publishing Ltd.
Resumo:
Superconductors have a bright future; they are able to carry very high current densities, switch rapidly in electronic circuits, detect extremely small perturbations in magnetic fields, and sustain very high magnetic fields. Of most interest to large-scale electrical engineering applications are the ability to carry large currents and to provide large magnetic fields. There are many projects that use the first property, and these have concentrated on power generation, transmission, and utilization; however, there are relatively few, which are currently exploiting the ability to sustain high magnetic fields. The main reason for this is that high field wound magnets can and have been made from both BSCCO and YBCO, but currently, their cost is much higher than the alternative provided by low-Tc materials such as Nb3Sn and NbTi. An alternative form of the material is the bulk form, which can be magnetized to high fields. This paper explains the mechanism, which allows superconductors to be magnetized without the need for high field magnets to perform magnetization. A finite-element model is presented, which is based on the E-J current law. Results from this model show how magnetization of the superconductor builds up cycle upon cycle when a traveling magnetic wave is induced above the superconductor. © 2011 IEEE.
Resumo:
The Brushless Doubly-Fed Induction Generator (Brushless DFIG) shows commercial promise for wind power generation due to its lower cost and higher reliability when compared with the conventional Doubly-Fed Induction Generator (DFIG). In the most recent grid codes, wind generators are required to be able to ride through a low voltage fault and meet the reactive current demand from the grid. Hence, a Low-Voltage Ride-Through (LVRT) capability is important for wind generators which are integrated into the grid. In this paper the authors propose a control strategy enabling the Brushless DFIG to successfully ride through a symmetrical voltage dip. The control strategy has been implemented on a 250 kW Brushless DFIG and the experimental results indicate that LVRT is possible without a crowbar.
Resumo:
The brushless doubly fed induction generator (BDFIG) shows commercial promise for wind power generation due to its lower cost and higher reliability when compared with the conventional DFIG. In the most recent grid codes, wind generators are required to be able to ride through a low-voltage fault and meet the reactive current demand from the grid. A low-voltage ride-through (LVRT) capability is therefore important for wind generators which are integrated into the grid. In this paper, the authors propose a control strategy enabling the BDFIG to successfully ride through a symmetrical voltage dip. The control strategy has been implemented on a 250-kW BDFIG, and the experimental results indicate that the LVRT is possible without a crowbar. © 1982-2012 IEEE.
Resumo:
Increasing demand for energy and continuing increase in environmental as well as financial cost of use of fossil fuels drive the need for utilization of fuels from sustainable sources for power generation. Development of fuel-flexible combustion systems is vital in enabling the use of sustainable fuels. It is also important that these sustainable combustion systems meet the strict governmental emission legislations. Biogas is considered as one of the viable sustainable fuels that can be used to power modern gas turbines: However, the change in chemical, thermal and transport properties as well as change in Wobbe index due to the variation of the fuel constituents can have a significant effect on the performance of the combustor. It is known that the fuel properties have strong influence on the dynamic flame response; however there is a lack of detailed information regarding the effect of fuel compositions on the sensitivity of the flames subjected to flow perturbations. In this study, we describe an experimental effort investigating the response of premixed biogas-air turbulent flames with varying proportions of CH4 and CO2 to velocity perturbations. The flame was stabilized using a centrally placed conical bluff body. Acoustic perturbations were imposed to the flow using loud speakers. The flame dynamics and the local heat release rate of these acoustically excited biogas flames were studied using simultaneous measurements of OH and H2CO planar laser induced fluorescence. OH* chemiluminescence along with acoustic pressure measurements were also recorded to estimate the total flame heat release modulation and the velocity fluctuations. The measurements were carried out by keeping the theoretical laminar flame speed constant while varying the bulk velocity and the fuel composition. The results indicate that the flame sensitivity to perturbations increased with increased dilution of CH4 by CO2 at low amplitude forcing, while at high amplitude forcing conditions the magnitude of the flame response was independent of dilution.