830 resultados para ecological segmentation
Resumo:
Medical doctors often do not trust the result of fully automatic segmentations because they have no possibility to make corrections if necessary. On the other hand, manual corrections can introduce a user bias. In this work, we propose to integrate the possibility for quick manual corrections into a fully automatic segmentation method for brain tumor images. This allows for necessary corrections while maintaining a high objectiveness. The underlying idea is similar to the well-known Grab-Cut algorithm, but here we combine decision forest classification with conditional random field regularization for interactive segmentation of 3D medical images. The approach has been evaluated by two different users on the BraTS2012 dataset. Accuracy and robustness improved compared to a fully automatic method and our interactive approach was ranked among the top performing methods. Time for computation including manual interaction was less than 10 minutes per patient, which makes it attractive for clinical use.
Resumo:
This paper analyses local geographical contexts targeted by transnational large-scale land acquisitions (>200 ha per deal) in order to understand how emerging patterns of socio-ecological characteristics can be related to processes of large-scale foreign investment in land. Using a sample of 139 land deals georeferenced with high spatial accuracy, we first analyse their target contexts in terms of land cover, population density, accessibility, and indicators for agricultural potential. Three distinct patterns emerge from the analysis: densely populated and easily accessible croplands (35% of land deals); remote forestlands with lower population densities (34% of land deals); and moderately populated and moderately accessible shrub- or grasslands (26% of land deals). These patterns are consistent with processes described in the relevant case study literature, and they each involve distinct types of stakeholders and associated competition over land. We then repeat the often-cited analysis that postulates a link between land investments and target countries with abundant so-called “idle” or “marginal” lands as measured by yield gap and available suitable but uncultivated land; our methods differ from the earlier approach, however, in that we examine local context (10-km radius) rather than countries as a whole. The results show that earlier findings are disputable in terms of concepts, methods, and contents. Further, we reflect on methodologies for exploring linkages between socioecological patterns and land investment processes. Improving and enhancing large datasets of georeferenced land deals is an important next step; at the same time, careful choice of the spatial scale of analysis is crucial for ensuring compatibility between the spatial accuracy of land deal locations and the resolution of available geospatial data layers. Finally, we argue that new approaches and methods must be developed to empirically link socio-ecological patterns in target contexts to key determinants of land investment processes. This would help to improve the validity and the reach of our findings as an input for evidence-informed policy debates.
Resumo:
In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences. Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low- and high-grade glioma patients - manually annotated by up to four raters - and to 65 comparable scans generated using tumor image simulation software. Quantitative evaluations revealed considerable disagreement between the human raters in segmenting various tumor sub-regions (Dice scores in the range 74-85%), illustrating the difficulty of this task. We found that different algorithms worked best for different sub-regions (reaching performance comparable to human inter-rater variability), but that no single algorithm ranked in the top for all subregions simultaneously. Fusing several good algorithms using a hierarchical majority vote yielded segmentations that consistently ranked above all individual algorithms, indicating remaining opportunities for further methodological improvements. The BRATS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing benchmarking resource.
Resumo:
This article examines the issue of climate change in the context of ecocriticism. It analyzes some of the narrative forms employed in the mediation of climate change science, focusing on those used by mediators who are not themselves scientists in the transmission of scientific information to a nonspecialist readership or audience. It reviews four relevant works that combine the communication of scientific theories and facts with pedagogical and motivational impulses. These include David Guggenheimer’s documentary film An Inconvenient Truth, Fred Pearce’s book The Last Generation: How Nature Will Take Her Revenge for Climate Change and the climate change manuals The Live Earth Global Warming Survival Handbook and How to Save the Climate.
Resumo:
Conventional risk assessments for crop protection chemicals compare the potential for causing toxicity (hazard identification) to anticipated exposure. New regulatory approaches have been proposed that would exclude exposure assessment and just focus on hazard identification based on endocrine disruption. This review comprises a critical analysis of hazard, focusing on the relative sensitivity of endocrine and non-endocrine endpoints, using a class of crop protection chemicals, the azole fungicides. These were selected because they are widely used on important crops (e.g. grains) and thereby can contact target and non-target plants and enter the food chain of humans and wildlife. Inhibition of lanosterol 14α-demethylase (CYP51) mediates the antifungal effect. Inhibition of other CYPs, such as aromatase (CYP19), can lead to numerous toxicological effects, which are also evident from high dose human exposures to therapeutic azoles. Because of its widespread use and substantial database, epoxiconazole was selected as a representative azole fungicide. Our critical analysis concluded that anticipated human exposure to epoxiconazole would yield a margin of safety of at least three orders of magnitude for reproductive effects observed in laboratory rodent studies that are postulated to be endocrine-driven (i.e. fetal resorptions). The most sensitive ecological species is the aquatic plant Lemna (duckweed), for which the margin of safety is less protective than for human health. For humans and wildlife, endocrine disruption is not the most sensitive endpoint. It is concluded that conventional risk assessment, considering anticipated exposure levels, will be protective of both human and ecological health. Although the toxic mechanisms of other azole compounds may be similar, large differences in potency will require a case-by-case risk assessment.
Resumo:
AIMS: To investigate pathways through which momentary negative affect and depressive symptoms affect risk of lapse during smoking cessation attempts. DESIGN: Ecological momentary assessment was carried out during 2 weeks after an unassisted smoking cessation attempt. A 3-month follow-up measured smoking frequency. SETTING: Data were collected via mobile devices in German-speaking Switzerland. PARTICIPANTS: A total of 242 individuals (age 20-40, 67% men) reported 7112 observations. MEASUREMENTS: Online surveys assessed baseline depressive symptoms and nicotine dependence. Real-time data on negative affect, physical withdrawal symptoms, urge to smoke, abstinence-related self-efficacy and lapses. FINDINGS: A two-level structural equation model suggested that on the situational level, negative affect increased the urge to smoke and decreased self-efficacy (β = 0.20; β = -0.12, respectively), but had no direct effect on lapse risk. A higher urge to smoke (β = 0.09) and lower self-efficacy (β = -0.11) were confirmed as situational antecedents of lapses. Depressive symptoms at baseline were a strong predictor of a person's average negative affect (β = 0.35, all P < 0.001). However, the baseline characteristics influenced smoking frequency 3 months later only indirectly, through influences of average states on the number of lapses during the quit attempt. CONCLUSIONS: Controlling for nicotine dependence, higher depressive symptoms at baseline were associated strongly with a worse longer-term outcome. Negative affect experienced during the quit attempt was the only pathway through which the baseline depressive symptoms were associated with a reduced self-efficacy and increased urges to smoke, all leading to the increased probability of lapses.
Resumo:
Purpose: Proper delineation of ocular anatomy in 3D imaging is a big challenge, particularly when developing treatment plans for ocular diseases. Magnetic Resonance Imaging (MRI) is nowadays utilized in clinical practice for the diagnosis confirmation and treatment planning of retinoblastoma in infants, where it serves as a source of information, complementary to the Fundus or Ultrasound imaging. Here we present a framework to fully automatically segment the eye anatomy in the MRI based on 3D Active Shape Models (ASM), we validate the results and present a proof of concept to automatically segment pathological eyes. Material and Methods: Manual and automatic segmentation were performed on 24 images of healthy children eyes (3.29±2.15 years). Imaging was performed using a 3T MRI scanner. The ASM comprises the lens, the vitreous humor, the sclera and the cornea. The model was fitted by first automatically detecting the position of the eye center, the lens and the optic nerve, then aligning the model and fitting it to the patient. We validated our segmentation method using a leave-one-out cross validation. The segmentation results were evaluated by measuring the overlap using the Dice Similarity Coefficient (DSC) and the mean distance error. Results: We obtained a DSC of 94.90±2.12% for the sclera and the cornea, 94.72±1.89% for the vitreous humor and 85.16±4.91% for the lens. The mean distance error was 0.26±0.09mm. The entire process took 14s on average per eye. Conclusion: We provide a reliable and accurate tool that enables clinicians to automatically segment the sclera, the cornea, the vitreous humor and the lens using MRI. We additionally present a proof of concept for fully automatically segmenting pathological eyes. This tool reduces the time needed for eye shape delineation and thus can help clinicians when planning eye treatment and confirming the extent of the tumor.
Resumo:
INTRODUCTION Native-MR angiography (N-MRA) is considered an imaging alternative to contrast enhanced MR angiography (CE-MRA) for patients with renal insufficiency. Lower intraluminal contrast in N-MRA often leads to failure of the segmentation process in commercial algorithms. This study introduces an in-house 3D model-based segmentation approach used to compare both sequences by automatic 3D lumen segmentation, allowing for evaluation of differences of aortic lumen diameters as well as differences in length comparing both acquisition techniques at every possible location. METHODS AND MATERIALS Sixteen healthy volunteers underwent 1.5-T-MR Angiography (MRA). For each volunteer, two different MR sequences were performed, CE-MRA: gradient echo Turbo FLASH sequence and N-MRA: respiratory-and-cardiac-gated, T2-weighted 3D SSFP. Datasets were segmented using a 3D model-based ellipse-fitting approach with a single seed point placed manually above the celiac trunk. The segmented volumes were manually cropped from left subclavian artery to celiac trunk to avoid error due to side branches. Diameters, volumes and centerline length were computed for intraindividual comparison. For statistical analysis the Wilcoxon-Signed-Ranked-Test was used. RESULTS Average centerline length obtained based on N-MRA was 239.0±23.4 mm compared to 238.6±23.5 mm for CE-MRA without significant difference (P=0.877). Average maximum diameter obtained based on N-MRA was 25.7±3.3 mm compared to 24.1±3.2 mm for CE-MRA (P<0.001). In agreement with the difference in diameters, volumes obtained based on N-MRA (100.1±35.4 cm(3)) were consistently and significantly larger compared to CE-MRA (89.2±30.0 cm(3)) (P<0.001). CONCLUSIONS 3D morphometry shows highly similar centerline lengths for N-MRA and CE-MRA, but systematically higher diameters and volumes for N-MRA.
Resumo:
BACKGROUND A precise detection of volume change allows for better estimating the biological behavior of the lung nodules. Postprocessing tools with automated detection, segmentation, and volumetric analysis of lung nodules may expedite radiological processes and give additional confidence to the radiologists. PURPOSE To compare two different postprocessing software algorithms (LMS Lung, Median Technologies; LungCARE®, Siemens) in CT volumetric measurement and to analyze the effect of soft (B30) and hard reconstruction filter (B70) on automated volume measurement. MATERIAL AND METHODS Between January 2010 and April 2010, 45 patients with a total of 113 pulmonary nodules were included. The CT exam was performed on a 64-row multidetector CT scanner (Somatom Sensation, Siemens, Erlangen, Germany) with the following parameters: collimation, 24x1.2 mm; pitch, 1.15; voltage, 120 kVp; reference tube current-time, 100 mAs. Automated volumetric measurement of each lung nodule was performed with the two different postprocessing algorithms based on two reconstruction filters (B30 and B70). The average relative volume measurement difference (VME%) and the limits of agreement between two methods were used for comparison. RESULTS At soft reconstruction filters the LMS system produced mean nodule volumes that were 34.1% (P < 0.0001) larger than those by LungCARE® system. The VME% was 42.2% with a limit of agreement between -53.9% and 138.4%.The volume measurement with soft filters (B30) was significantly larger than with hard filters (B70); 11.2% for LMS and 1.6% for LungCARE®, respectively (both with P < 0.05). LMS measured greater volumes with both filters, 13.6% for soft and 3.8% for hard filters, respectively (P < 0.01 and P > 0.05). CONCLUSION There is a substantial inter-software (LMS/LungCARE®) as well as intra-software variability (B30/B70) in lung nodule volume measurement; therefore, it is mandatory to use the same equipment with the same reconstruction filter for the follow-up of lung nodule volume.