920 resultados para data representation
Resumo:
This paper presents an input-orientated data envelopment analysis (DEA) framework which allows the measurement and decomposition of economic, environmental and ecological efficiency levels in agricultural production across different countries. Economic, environmental and ecological optimisations search for optimal input combinations that minimise total costs, total amount of nutrients, and total amount of cumulative exergy contained in inputs respectively. The application of the framework to an agricultural dataset of 30 OECD countries revealed that (i) there was significant scope to make their agricultural production systemsmore environmentally and ecologically sustainable; (ii) the improvement in the environmental and ecological sustainability could be achieved by being more technically efficient and, even more significantly, by changing the input combinations; (iii) the rankings of sustainability varied significantly across OECD countries within frontier-based environmental and ecological efficiency measures and between frontier-based measures and indicators.
Resumo:
This article investigates the ethnographic methodological question of how the researcher observes objectively while being part of the problem they are observing. It uses a case study of ABC Pool to argue a cooperative approach that combines the roles of the ethnographer with that of a community manager who assists in constructing a true representation of the researched environment. By using reflexivity as a research tool, the ethnographer engages in a process to self-check their personal presumptions and prejudices, and to strengthen the constructed representation of the researched environment. This article also suggests combining management and expertise research from the social sciences with ethnography, to understand and engage with the research field participants more intimately - which, ultimately, assists in gathering and analysing richer qualitative data.
Resumo:
Spatio-Temporal interest points are the most popular feature representation in the field of action recognition. A variety of methods have been proposed to detect and describe local patches in video with several techniques reporting state of the art performance for action recognition. However, the reported results are obtained under different experimental settings with different datasets, making it difficult to compare the various approaches. As a result of this, we seek to comprehensively evaluate state of the art spatio- temporal features under a common evaluation framework with popular benchmark datasets (KTH, Weizmann) and more challenging datasets such as Hollywood2. The purpose of this work is to provide guidance for researchers, when selecting features for different applications with different environmental conditions. In this work we evaluate four popular descriptors (HOG, HOF, HOG/HOF, HOG3D) using a popular bag of visual features representation, and Support Vector Machines (SVM)for classification. Moreover, we provide an in-depth analysis of local feature descriptors and optimize the codebook sizes for different datasets with different descriptors. In this paper, we demonstrate that motion based features offer better performance than those that rely solely on spatial information, while features that combine both types of data are more consistent across a variety of conditions, but typically require a larger codebook for optimal performance.
Resumo:
The ability to forecast machinery health is vital to reducing maintenance costs, operation downtime and safety hazards. Recent advances in condition monitoring technologies have given rise to a number of prognostic models which attempt to forecast machinery health based on condition data such as vibration measurements. This paper demonstrates how the population characteristics and condition monitoring data (both complete and suspended) of historical items can be integrated for training an intelligent agent to predict asset health multiple steps ahead. The model consists of a feed-forward neural network whose training targets are asset survival probabilities estimated using a variation of the Kaplan–Meier estimator and a degradation-based failure probability density function estimator. The trained network is capable of estimating the future survival probabilities when a series of asset condition readings are inputted. The output survival probabilities collectively form an estimated survival curve. Pump data from a pulp and paper mill were used for model validation and comparison. The results indicate that the proposed model can predict more accurately as well as further ahead than similar models which neglect population characteristics and suspended data. This work presents a compelling concept for longer-range fault prognosis utilising available information more fully and accurately.
Resumo:
Our paper approaches Twitter through the lens of “platform politics” (Gillespie, 2010), focusing in particular on controversies around user data access, ownership, and control. We characterise different actors in the Twitter data ecosystem: private and institutional end users of Twitter, commercial data resellers such as Gnip and DataSift, data scientists, and finally Twitter, Inc. itself; and describe their conflicting interests. We furthermore study Twitter’s Terms of Service and application programming interface (API) as material instantiations of regulatory instruments used by the platform provider and argue for a more promotion of data rights and literacy to strengthen the position of end users.
Resumo:
The deployment of new emerging technologies, such as cooperative systems, allows the traffic community to foresee relevant improvements in terms of traffic safety and efficiency. Vehicles are able to communicate on the local traffic state in real time, which could result in an automatic and therefore better reaction to the mechanism of traffic jam formation. An upstream single hop radio broadcast network can improve the perception of each cooperative driver within radio range and hence the traffic stability. The impact of a cooperative law on traffic congestion appearance is investigated, analytically and through simulation. Ngsim field data is used to calibrate the Optimal Velocity with Relative Velocity (OVRV) car following model and the MOBIL lane-changing model is implemented. Assuming that congestion can be triggered either by a perturbation in the instability domain or by a critical lane changing behavior, the calibrated car following behavior is used to assess the impact of a microscopic cooperative law on abnormal lane changing behavior. The cooperative law helps reduce and delay traffic congestion as it increases traffic flow stability.
Resumo:
Digital Stories are short autobiographical documentaries, often illustrated with personal photographs and narrated in the first person, and typically produced in group workshops. As a media form they offer ‘ordinary people’ the opportunity to represent themselves to audiences of their choosing; and this amplification of hitherto unheard voices has significant repercussions for their social participation. Many of the storytellers involved in the ‘Rainbow Family Tree’ case study that is the subject of this paper can be characterised as ‘everyday’ activists for their common desire to use their personal stories to increase social acceptance of marginalised identity categories. However, in conflict with their willingness to share their personal stories, many fear the risks and ramifications of distributing them in public spaces (especially online) to audiences both intimate and unknown. Additionally, while technologies for production and distribution of rich media products have become more accessible and user-friendly, many obstacles remain. For many people there are difficulties with technological access and aptitude, personal agency, cultural capital, and social isolation, not to mention availability of the time and energy requisite to Digital Storytelling. Additionally, workshop context, facilitation and distribution processes all influence the content of stories. This paper explores the many factors that make ‘authentic’ self-representation far from straight forward. I use qualitative data drawn from interviews, Digital Story texts and ethnographic observation of GLBTQIS participants in a Digital Storytelling initiative that combined face-to-face and online modes of participation. I consider mediating influences in practice and theory and draw on strategies put forth in cultural anthropology and narrative therapy to propose some practical tools for nuanced and sensitive facilitation of Digital Storytelling workshops and webspaces. Finally, I consider the implications of these facilitation strategies for voice, identity and social participation.
Resumo:
Background Accumulated biological research outcomes show that biological functions do not depend on individual genes, but on complex gene networks. Microarray data are widely used to cluster genes according to their expression levels across experimental conditions. However, functionally related genes generally do not show coherent expression across all conditions since any given cellular process is active only under a subset of conditions. Biclustering finds gene clusters that have similar expression levels across a subset of conditions. This paper proposes a seed-based algorithm that identifies coherent genes in an exhaustive, but efficient manner. Methods In order to find the biclusters in a gene expression dataset, we exhaustively select combinations of genes and conditions as seeds to create candidate bicluster tables. The tables have two columns: (a) a gene set, and (b) the conditions on which the gene set have dissimilar expression levels to the seed. First, the genes with less than the maximum number of dissimilar conditions are identified and a table of these genes is created. Second, the rows that have the same dissimilar conditions are grouped together. Third, the table is sorted in ascending order based on the number of dissimilar conditions. Finally, beginning with the first row of the table, a test is run repeatedly to determine whether the cardinality of the gene set in the row is greater than the minimum threshold number of genes in a bicluster. If so, a bicluster is outputted and the corresponding row is removed from the table. Repeating this process, all biclusters in the table are systematically identified until the table becomes empty. Conclusions This paper presents a novel biclustering algorithm for the identification of additive biclusters. Since it involves exhaustively testing combinations of genes and conditions, the additive biclusters can be found more readily.
Resumo:
miRDeep and its varieties are widely used to quantify known and novel micro RNA (miRNA) from small RNA sequencing (RNAseq). This article describes miRDeep*, our integrated miRNA identification tool, which is modeled off miRDeep, but the precision of detecting novel miRNAs is improved by introducing new strategies to identify precursor miRNAs. miRDeep* has a user-friendly graphic interface and accepts raw data in FastQ and Sequence Alignment Map (SAM) or the binary equivalent (BAM) format. Known and novel miRNA expression levels, as measured by the number of reads, are displayed in an interface, which shows each RNAseq read relative to the pre-miRNA hairpin. The secondary pre-miRNA structure and read locations for each predicted miRNA are shown and kept in a separate figure file. Moreover, the target genes of known and novel miRNAs are predicted using the TargetScan algorithm, and the targets are ranked according to the confidence score. miRDeep* is an integrated standalone application where sequence alignment, pre-miRNA secondary structure calculation and graphical display are purely Java coded. This application tool can be executed using a normal personal computer with 1.5 GB of memory. Further, we show that miRDeep* outperformed existing miRNA prediction tools using our LNCaP and other small RNAseq datasets. miRDeep* is freely available online at http://www.australianprostatecentre.org/research/software/mirdeep-star
Resumo:
The IEEE Subcommittee on the Application of Probability Methods (APM) published the IEEE Reliability Test System (RTS) [1] in 1979. This system provides a consistent and generally acceptable set of data that can be used both in generation capacity and in composite system reliability evaluation [2,3]. The test system provides a basis for the comparison of results obtained by different people using different methods. Prior to its publication, there was no general agreement on either the system or the data that should be used to demonstrate or test various techniques developed to conduct reliability studies. Development of reliability assessment techniques and programs are very dependent on the intent behind the development as the experience of one power utility with their system may be quite different from that of another utility. The development and the utilization of a reliability program are, therefore, greatly influenced by the experience of a utlity and the intent of the system manager, planner and designer conducting the reliability studies. The IEEE-RTS has proved to be extremely valuable in highlighting and comparing the capabilities (or incapabilities) of programs used in reliability studies, the differences in the perception of various power utilities and the differences in the solution techniques. The IEEE-RTS contains a reasonably large power network which can be difficult to use for initial studies in an educational environment.
Resumo:
The IEEE Reliability Test System (RTS) developed by the Application of Probability Method Subcommittee has been used to compare and test a wide range of generating capacity and composite system evaluation techniques and subsequent digital computer programs. A basic reliability test system is presented which has evolved from the reliability education and research programs conducted by the Power System Research Group at the University of Saskatchewan. The basic system data necessary for adequacy evaluation at the generation and composite generation and transmission system levels are presented together with the fundamental data required to conduct reliability-cost/reliability-worth evaluation
Resumo:
The concept of older adults contributing to society in a meaningful way has been termed ‘active ageing’. Active ageing reflects changes in prevailing theories of social and psychological aspects of ageing, with a focus on individuals' strengths as opposed to their deficits or pathology. In order to explore predictors of active ageing, the Australian Active Ageing (Triple A) project group undertook a national postal survey of participants over the age of 50 years recruited randomly through their 2004 membership of a large Australia-wide senior's organisation. The survey comprised 178 items covering paid and voluntary work, learning, social, spiritual, emotional, health and home, life events and demographic items. A 45% response rate (2655 returned surveys) reflected an expected balance of gender, age and geographic representation of participants. The data were analysed using data mining techniques to represent generalizations on individual situations. Data mining identifies the valid, novel, potentially useful and understandable patterns and trends in data. The results based on the clustering mining technique indicate that physical and emotional health combined with the desire to learn were the most significant factors when considering active ageing. The findings suggest that remaining active in later life is not only directly related to the maintenance of emotional and physical health, but may be significantly intertwined with the opportunity to engage in on-going learning activities that are relevant to the individual. The findings of this study suggest that practitioners and policy makers need to incorporate older peoples' learning needs within service and policy framework developments.
Resumo:
Collaborative methods are promising tools for solving complex security tasks. In this context, the authors present the security overlay framework CIMD (Collaborative Intrusion and Malware Detection), enabling participants to state objectives and interests for joint intrusion detection and find groups for the exchange of security-related data such as monitoring or detection results accordingly; to these groups the authors refer as detection groups. First, the authors present and discuss a tree-oriented taxonomy for the representation of nodes within the collaboration model. Second, they introduce and evaluate an algorithm for the formation of detection groups. After conducting a vulnerability analysis of the system, the authors demonstrate the validity of CIMD by examining two different scenarios inspired sociology where the collaboration is advantageous compared to the non-collaborative approach. They evaluate the benefit of CIMD by simulation in a novel packet-level simulation environment called NeSSi (Network Security Simulator) and give a probabilistic analysis for the scenarios.
Resumo:
This paper presents a graph-based method to weight medical concepts in documents for the purposes of information retrieval. Medical concepts are extracted from free-text documents using a state-of-the-art technique that maps n-grams to concepts from the SNOMED CT medical ontology. In our graph-based concept representation, concepts are vertices in a graph built from a document, edges represent associations between concepts. This representation naturally captures dependencies between concepts, an important requirement for interpreting medical text, and a feature lacking in bag-of-words representations. We apply existing graph-based term weighting methods to weight medical concepts. Using concepts rather than terms addresses vocabulary mismatch as well as encapsulates terms belonging to a single medical entity into a single concept. In addition, we further extend previous graph-based approaches by injecting domain knowledge that estimates the importance of a concept within the global medical domain. Retrieval experiments on the TREC Medical Records collection show our method outperforms both term and concept baselines. More generally, this work provides a means of integrating background knowledge contained in medical ontologies into data-driven information retrieval approaches.
Resumo:
Buildings are key mediators between human activity and the environment around them, but details of energy usage and activity in buildings is often poorly communicated and understood. ECOS is an Eco-Visualization project that aims to contextualize the energy generation and consumption of a green building in a variety of different climates. The ECOS project is being developed for a large public interactive space installed in the new Science and Engineering Centre of the Queensland University of Technology that is dedicated to delivering interactive science education content to the public. This paper focuses on how design can develop ICT solutions from large data sets to create meaningful engagement with environmental data.