923 resultados para data publishing
Resumo:
Cluster analysis for categorical data has been an active area of research. A well-known problem in this area is the determination of the number of clusters, which is unknown and must be inferred from the data. In order to estimate the number of clusters, one often resorts to information criteria, such as BIC (Bayesian information criterion), MML (minimum message length, proposed by Wallace and Boulton, 1968), and ICL (integrated classification likelihood). In this work, we adopt the approach developed by Figueiredo and Jain (2002) for clustering continuous data. They use an MML criterion to select the number of clusters and a variant of the EM algorithm to estimate the model parameters. This EM variant seamlessly integrates model estimation and selection in a single algorithm. For clustering categorical data, we assume a finite mixture of multinomial distributions and implement a new EM algorithm, following a previous version (Silvestre et al., 2008). Results obtained with synthetic datasets are encouraging. The main advantage of the proposed approach, when compared to the above referred criteria, is the speed of execution, which is especially relevant when dealing with large data sets.
Resumo:
Catastrophic events, such as wars and terrorist attacks, tornadoes and hurricanes, earthquakes, tsunamis, floods and landslides, are always accompanied by a large number of casualties. The size distribution of these casualties has separately been shown to follow approximate power law (PL) distributions. In this paper, we analyze the statistical distributions of the number of victims of catastrophic phenomena, in particular, terrorism, and find double PL behavior. This means that the data sets are better approximated by two PLs instead of a single one. We plot the PL parameters, corresponding to several events, and observe an interesting pattern in the charts, where the lines that connect each pair of points defining the double PLs are almost parallel to each other. A complementary data analysis is performed by means of the computation of the entropy. The results reveal relationships hidden in the data that may trigger a future comprehensive explanation of this type of phenomena.
Resumo:
Consider the problem of disseminating data from an arbitrary source node to all other nodes in a distributed computer system, like Wireless Sensor Networks (WSNs). We assume that wireless broadcast is used and nodes do not know the topology. We propose new protocols which disseminate data faster and use fewer broadcasts than the simple broadcast protocol.
Resumo:
The paper investigates the risk factors for the severity of orthodontic root resorption. The multidimensional scaling (MDS) visualization method is used to investigate the experimental data from patients who received orthodontic treatment at the Department of Orthodontics and Dentofacial Orthopedics, Faculty of Dentistry, “Carol Davila” University of Medicine and Pharmacy, during a period of 4 years. The clusters emerging in the MDS plots reveal features and properties not easily captured by classical statistical tools. The results support the adoption of MDS for tackling the dentistry information and overcoming noise embedded into the data. The method introduced in this paper is rapid, efficient, and very useful for treating the risk factors for the severity of orthodontic root resorption.
Resumo:
Nowadays, due to the incredible grow of the mobile devices market, when we want to implement a client-server applications we must consider mobile devices limitations. In this paper we discuss which can be the more reliable and fast way to exchange information between a server and an Android mobile application. This is an important issue because with a responsive application the user experience is more enjoyable. In this paper we present a study that test and evaluate two data transfer protocols, socket and HTTP, and three data serialization formats (XML, JSON and Protocol Buffers) using different environments and mobile devices to realize which is the most practical and fast to use.
Resumo:
Dissertação de Natureza Científica para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização de Edificações
Resumo:
The goal of the this paper is to show that the DGPS data Internet service we designed and developed provides campus-wide real time access to Differential GPS (DGPS) data and, thus, supports precise outdoor navigation. First we describe the developed distributed system in terms of architecture (a three tier client/server application), services provided (real time DGPS data transportation from remote DGPS sources and campus wide data dissemination) and transmission modes implemented (raw and frame mode over TCP and UDP). Then we present and discuss the results obtained and, finally, we draw some conclusions.
Resumo:
The principal topic of this work is the application of data mining techniques, in particular of machine learning, to the discovery of knowledge in a protein database. In the first chapter a general background is presented. Namely, in section 1.1 we overview the methodology of a Data Mining project and its main algorithms. In section 1.2 an introduction to the proteins and its supporting file formats is outlined. This chapter is concluded with section 1.3 which defines that main problem we pretend to address with this work: determine if an amino acid is exposed or buried in a protein, in a discrete way (i.e.: not continuous), for five exposition levels: 2%, 10%, 20%, 25% and 30%. In the second chapter, following closely the CRISP-DM methodology, whole the process of construction the database that supported this work is presented. Namely, it is described the process of loading data from the Protein Data Bank, DSSP and SCOP. Then an initial data exploration is performed and a simple prediction model (baseline) of the relative solvent accessibility of an amino acid is introduced. It is also introduced the Data Mining Table Creator, a program developed to produce the data mining tables required for this problem. In the third chapter the results obtained are analyzed with statistical significance tests. Initially the several used classifiers (Neural Networks, C5.0, CART and Chaid) are compared and it is concluded that C5.0 is the most suitable for the problem at stake. It is also compared the influence of parameters like the amino acid information level, the amino acid window size and the SCOP class type in the accuracy of the predictive models. The fourth chapter starts with a brief revision of the literature about amino acid relative solvent accessibility. Then, we overview the main results achieved and finally discuss about possible future work. The fifth and last chapter consists of appendices. Appendix A has the schema of the database that supported this thesis. Appendix B has a set of tables with additional information. Appendix C describes the software provided in the DVD accompanying this thesis that allows the reconstruction of the present work.
Resumo:
Sensor/actuator networks promised to extend automated monitoring and control into industrial processes. Avionic system is one of the prominent technologies that can highly gain from dense sensor/actuator deployments. An aircraft with smart sensing skin would fulfill the vision of affordability and environmental friendliness properties by reducing the fuel consumption. Achieving these properties is possible by providing an approximate representation of the air flow across the body of the aircraft and suppressing the detected aerodynamic drags. To the best of our knowledge, getting an accurate representation of the physical entity is one of the most significant challenges that still exists with dense sensor/actuator network. This paper offers an efficient way to acquire sensor readings from very large sensor/actuator network that are located in a small area (dense network). It presents LIA algorithm, a Linear Interpolation Algorithm that provides two important contributions. First, it demonstrates the effectiveness of employing a transformation matrix to mimic the environmental behavior. Second, it renders a smart solution for updating the previously defined matrix through a procedure called learning phase. Simulation results reveal that the average relative error in LIA algorithm can be reduced by as much as 60% by exploiting transformation matrix.
Resumo:
Estuaries are perhaps the most threatened environments in the coastal fringe; the coincidence of high natural value and attractiveness for human use has led to conflicts between conservation and development. These conflicts occur in the Sado Estuary since its location is near the industrialised zone of Peninsula of Setúbal and at the same time, a great part of the Estuary is classified as a Natural Reserve due to its high biodiversity. These facts led us to the need of implementing a model of environmental management and quality assessment, based on methodologies that enable the assessment of the Sado Estuary quality and evaluation of the human pressures in the estuary. These methodologies are based on indicators that can better depict the state of the environment and not necessarily all that could be measured or analysed. Sediments have always been considered as an important temporary source of some compounds or a sink for other type of materials or an interface where a great diversity of biogeochemical transformations occur. For all this they are of great importance in the formulation of coastal management system. Many authors have been using sediments to monitor aquatic contamination, showing great advantages when compared to the sampling of the traditional water column. The main objective of this thesis was to develop an estuary environmental management framework applied to Sado Estuary using the DPSIR Model (EMMSado), including data collection, data processing and data analysis. The support infrastructure of EMMSado were a set of spatially contiguous and homogeneous regions of sediment structure (management units). The environmental quality of the estuary was assessed through the sediment quality assessment and integrated in a preliminary stage with the human pressure for development. Besides the earlier explained advantages, studying the quality of the estuary mainly based on the indicators and indexes of the sediment compartment also turns this methodology easier, faster and human and financial resource saving. These are essential factors to an efficient environmental management of coastal areas. Data management, visualization, processing and analysis was obtained through the combined use of indicators and indices, sampling optimization techniques, Geographical Information Systems, remote sensing, statistics for spatial data, Global Positioning Systems and best expert judgments. As a global conclusion, from the nineteen management units delineated and analyzed three showed no ecological risk (18.5 % of the study area). The areas of more concern (5.6 % of the study area) are located in the North Channel and are under strong human pressure mainly due to industrial activities. These areas have also low hydrodynamics and are, thus associated with high levels of deposition. In particular the areas near Lisnave and Eurominas industries can also accumulate the contamination coming from Águas de Moura Channel, since particles coming from that channel can settle down in that area due to residual flow. In these areas the contaminants of concern, from those analyzed, are the heavy metals and metalloids (Cd, Cu, Zn and As exceeded the PEL guidelines) and the pesticides BHC isomers, heptachlor, isodrin, DDT and metabolits, endosulfan and endrin. In the remain management units (76 % of the study area) there is a moderate impact potential of occurrence of adverse ecological effects and in some of these areas no stress agents could be identified. This emphasizes the need for further research, since unmeasured chemicals may be causing or contributing to these adverse effects. Special attention must be taken to the units with moderate impact potential of occurrence of adverse ecological effects, located inside the natural reserve. Non-point source pollution coming from agriculture and aquaculture activities also seem to contribute with important pollution load into the estuary entering from Águas de Moura Channel. This pressure is expressed in a moderate impact potential for ecological risk existent in the areas near the entrance of this Channel. Pressures may also came from Alcácer Channel although they were not quantified in this study. The management framework presented here, including all the methodological tools may be applied and tested in other estuarine ecosystems, which will also allow a comparison between estuarine ecosystems in other parts of the globe.
Resumo:
Managing the physical and compute infrastructure of a large data center is an embodiment of a Cyber-Physical System (CPS). The physical parameters of the data center (such as power, temperature, pressure, humidity) are tightly coupled with computations, even more so in upcoming data centers, where the location of workloads can vary substantially due, for example, to workloads being moved in a cloud infrastructure hosted in the data center. In this paper, we describe a data collection and distribution architecture that enables gathering physical parameters of a large data center at a very high temporal and spatial resolutionof the sensor measurements. We think this is an important characteristic to enable more accurate heat-flow models of the data center andwith them, _and opportunities to optimize energy consumption. Havinga high resolution picture of the data center conditions, also enables minimizing local hotspots, perform more accurate predictive maintenance (pending failures in cooling and other infrastructure equipment can be more promptly detected) and more accurate billing. We detail this architecture and define the structure of the underlying messaging system that is used to collect and distribute the data. Finally, we show the results of a preliminary study of a typical data center radio environment.
Resumo:
Consider the problem of designing an algorithm for acquiring sensor readings. Consider specifically the problem of obtaining an approximate representation of sensor readings where (i) sensor readings originate from different sensor nodes, (ii) the number of sensor nodes is very large, (iii) all sensor nodes are deployed in a small area (dense network) and (iv) all sensor nodes communicate over a communication medium where at most one node can transmit at a time (a single broadcast domain). We present an efficient algorithm for this problem, and our novel algorithm has two desired properties: (i) it obtains an interpolation based on all sensor readings and (ii) it is scalable, that is, its time-complexity is independent of the number of sensor nodes. Achieving these two properties is possible thanks to the close interlinking of the information processing algorithm, the communication system and a model of the physical world.
Resumo:
This paper studies the information content of the chromosomes of twenty-three species. Several statistics considering different number of bases for alphabet character encoding are derived. Based on the resulting histograms, word delimiters and character relative frequencies are identified. The knowledge of this data allows moving along each chromosome while evaluating the flow of characters and words. The resulting flux of information is captured by means of Shannon entropy. The results are explored in the perspective of power law relationships allowing a quantitative evaluation of the DNA of the species.
Resumo:
Mestrado em Contabilidade e Gestão das Instituições Financeiras
Resumo:
Network control systems (NCSs) are spatially distributed systems in which the communication between sensors, actuators and controllers occurs through a shared band-limited digital communication network. However, the use of a shared communication network, in contrast to using several dedicated independent connections, introduces new challenges which are even more acute in large scale and dense networked control systems. In this paper we investigate a recently introduced technique of gathering information from a dense sensor network to be used in networked control applications. Obtaining efficiently an approximate interpolation of the sensed data is exploited as offering a good tradeoff between accuracy in the measurement of the input signals and the delay to the actuation. These are important aspects to take into account for the quality of control. We introduce a variation to the state-of-the-art algorithms which we prove to perform relatively better because it takes into account the changes over time of the input signal within the process of obtaining an approximate interpolation.