902 resultados para data privacy
Resumo:
Loop detectors are the oldest and widely used traffic data source. On urban arterials, they are mainly installed for signal control. Recently state of the art Bluetooth MAC Scanners (BMS) has significantly captured the interest of stakeholders for exploiting it for area wide traffic monitoring. Loop detectors provide flow- a fundamental traffic parameter; whereas BMS provides individual vehicle travel time between BMS stations. Hence, these two data sources complement each other, and if integrated should increase the accuracy and reliability of the traffic state estimation. This paper proposed a model that integrates loops and BMS data for seamless travel time and density estimation for urban signalised network. The proposed model is validated using both real and simulated data and the results indicate that the accuracy of the proposed model is over 90%.
Resumo:
The increasing growth in the use of Hardware Security Modules (HSMs) towards identification and authentication of a security endpoint have raised numerous privacy and security concerns. HSMs have the ability to tie a system or an object, along with its users to the physical world. However, this enables tracking of the user and/or an object associated with the HSM. Current systems do not adequately address the privacy needs and as such are susceptible to various attacks. In this work, we analyse various security and privacy concerns that arise when deploying such hardware security modules and propose a system that allow users to create pseudonyms from a trusted master public-secret key pair. The proposed system is based on the intractability of factoring and finding square roots of a quadratic residue modulo a composite number, where the composite number is a product of two large primes. Along with the standard notion of protecting privacy of an user, the proposed system offers colligation between seemingly independent pseudonyms. This new property when combined with HSMs that store the master secret key is extremely beneficial to a user, as it offers a convenient way to generate a large number of pseudonyms using relatively small storage requirements.
Resumo:
This paper presents ongoing work toward constructing efficient completely non-malleable public-key encryption scheme based on lattices in the standard (common reference string) model. An encryption scheme is completely non-malleable if it requires attackers to have negligible advantage, even if they are allowed to transform the public key under which the related message is encrypted. Ventre and Visconti proposed two inefficient constructions of completely non-malleable schemes, one in the common reference string model using non-interactive zero-knowledge proofs, and another using interactive encryption schemes. Recently, two efficient public-key encryption schemes have been proposed, both of them are based on pairing identity-based encryption.
Resumo:
The first generation e-passport standard is proven to be insecure and prone to various attacks. To strengthen, the European Union (EU) has proposed an Extended Access Control (EAC) mechanism for e-passports that intends to provide better security in protecting biometric information of the e-passport bearer. But, our analysis shows, the EU proposal fails to address many security and privacy issues that are paramount in implementing a strong security mechanism. In this paper we propose an on-line authentication mechanism for electronic passports that addresses the weakness in existing implementations, of both The International Civil Aviation Organisation (ICAO) and EU. Our proposal utilises ICAO PKI implementation, thus requiring very little modifications to the existing infrastructure which is already well established.
Resumo:
In this paper we describe the design of DNA Jewellery, which is a wearable tangible data representation of personal DNA profile data. An iterative design process was followed to develop a 3D form-language that could be mapped to standard DNA profile data, with the aim of retaining readability of data while also producing an aesthetically pleasing and unique result in the area of personalized design. The work explores design issues with the production of data tangibles, contributes to a growing body of research exploring tangible representations of data and highlights the importance of approaches that move between technology, art and design.
Resumo:
The motion response of marine structures in waves can be studied using finite-dimensional linear-time-invariant approximating models. These models, obtained using system identification with data computed by hydrodynamic codes, find application in offshore training simulators, hardware-in-the-loop simulators for positioning control testing, and also in initial designs of wave-energy conversion devices. Different proposals have appeared in the literature to address the identification problem in both time and frequency domains, and recent work has highlighted the superiority of the frequency-domain methods. This paper summarises practical frequency-domain estimation algorithms that use constraints on model structure and parameters to refine the search of approximating parametric models. Practical issues associated with the identification are discussed, including the influence of radiation model accuracy in force-to-motion models, which are usually the ultimate modelling objective. The illustration examples in the paper are obtained using a freely available MATLAB toolbox developed by the authors, which implements the estimation algorithms described.
Resumo:
Process models specify behavioral aspects by describing ordering constraints between tasks which must be accomplished to achieve envisioned goals. Tasks usually exchange information by means of data objects, i.e., by writing information to and reading information from data objects. A data object can be characterized by its states and allowed state transitions. In this paper, we propose a notion which checks conformance of a process model with respect to data objects that its tasks access. This new notion can be used to tell whether in every execution of a process model each time a task needs to access a data object in a particular state, it is ensured that the data object is in the expected state or can reach the expected state and, hence, the process model can achieve its goals.
Resumo:
Presentation by Tony Beatton, QUT Business School, at Managing your research data seminar, 2012
Resumo:
Presentation by Siobhann McCafferty, Institute for Future Environments, at Managing your research data seminar, 2012
Resumo:
A method is proposed to describe force or compound muscle action potential (CMAP) trace data collected in an electromyography study for motor unit number estimation (MUNE). Experimental data was collected using incre- mental stimulation at multiple durations. However, stimulus information, vital for alternate MUNE methods, is not comparable for multiple duration data and therefore previous methods of MUNE (Ridall et al., 2006, 2007) cannot be used with any reliability. Hypothesised ring combinations of motor units are mod- elled using a multiplicative factor and Bayesian P-spline formulation. The model describes the process for force and CMAP in a meaningful way.
Resumo:
Presentation by Dr Caroline Grant, Science & Engineering Faculty, IHBI, at Managing your research data seminar, 2012
Resumo:
Presentation by Paula Callan, eResearch Access Coordinator, at Managing your research data seminar, 2012
Resumo:
Presentation by Dr Joe Young, ITS-HPC and Research Support, Managing your research data seminar, 2012
Resumo:
The discovery by Watson and Crick of the structure of DNA is one of the great scientific discoveries. In the period since that discovery new areas of genetic research have opened up which hold out the hope of developing treatments or cures for many illnesses and diseases. Yet with these discoveries have also come an array of ethical and legal dilemmas about the use of genetic information and concerns about the potential for those with genetic diseases or conditions to be stigmatised and discriminated against. The discussion about the developments in genetic science has become increasingly, a debate about the use of genetic information within our society. Graeme Laurie’s book, Genetic Privacy: A Challenge to Medico-Legal Norms, guides the reader through the complexities of these debates by considering what we mean by privacy and asking whether our existing concepts are adequate to meet the challenges posed by the new genetics.
Resumo:
Introduction This study investigated the sensitivity of calculated stereotactic radiotherapy and radiosurgery doses to the accuracy of the beam data used by the treatment planning system. Methods Two sets of field output factors were acquired using fields smaller than approximately 1 cm2, for inclusion in beam data used by the iPlan treatment planning system (Brainlab, Feldkirchen, Germany). One set of output factors were measured using an Exradin A16 ion chamber (Standard Imaging, Middleton, USA). Although this chamber has a relatively small collecting volume (0.007 cm3), measurements made in small fields using this chamber are subject to the effects of volume averaging, electronic disequilibrium and chamber perturbations. The second, more accurate, set of measurements were obtained by applying perturbation correction factors, calculated using Monte Carlo simulations according to a method recommended by Cranmer-Sargison et al. [1] to measurements made using a 60017 unshielded electron diode (PTW, Freiburg, Germany). A series of 12 sample patient treatments were used to investigate the effects of beam data accuracy on resulting planned dose. These treatments, which involved 135 fields, were planned for delivery via static conformal arcs and 3DCRT techniques, to targets ranging from prostates (up to 8 cm across) to meningiomas (usually more than 2 cm across) to arterioveinous malformations, acoustic neuromas and brain metastases (often less than 2 cm across). Isocentre doses were calculated for all of these fields using iPlan, and the results of using the two different sets of beam data were evaluated. Results While the isocentre doses for many fields are identical (difference = 0.0 %), there is a general trend for the doses calculated using the data obtained from corrected diode measurements to exceed the doses calculated using the less-accurate Exradin ion chamber measurements (difference\0.0 %). There are several alarming outliers (circled in the Fig. 1) where doses differ by more than 3 %, in beams from sample treatments planned for volumes up to 2 cm across. Discussion and conclusions These results demonstrate that treatment planning dose calculations for SRT/SRS treatments can be substantially affected when beam data for fields smaller than approximately 1 cm2 are measured inaccurately, even when treatment volumes are up to 2 cm across.