816 resultados para criminals rehabilitation
Resumo:
Shows recommended changes at the Childs Park recreation area within the N.R.A. on the Pa. side of the Delaware River.
Resumo:
New motor rehabilitation therapies include virtual reality (VR) and robotic technologies. In limb rehabilitation, limb posture is required to (1) provide a limb realistic representation in VR games and (2) assess the patient improvement. When exoskeleton devices are used in the therapy, the measurements of their joint angles cannot be directly used to represent the posture of the patient limb, since the human and exoskeleton kinematic models differ. In response to this shortcoming, we propose a method to estimate the posture of the human limb attached to the exoskeleton. We use the exoskeleton joint angles measurements and the constraints of the exoskeleton on the limb to estimate the human limb joints angles. This paper presents (a) the mathematical formulation and solution to the problem, (b) the implementation of the proposed solution on a commercial exoskeleton system for the upper limb rehabilitation, (c) its integration into a rehabilitation VR game platform, and (d) the quantitative assessment of the method during elbow and wrist analytic training. Results show that this method properly estimates the limb posture to (i) animate avatars that represent the patient in VR games and (ii) obtain kinematic data for the patient assessment during elbow and wrist analytic rehabilitation.
Resumo:
Robot-Assisted Rehabilitation (RAR) is relevant for treating patients affected by nervous system injuries (e.g., stroke and spinal cord injury) -- The accurate estimation of the joint angles of the patient limbs in RAR is critical to assess the patient improvement -- The economical prevalent method to estimate the patient posture in Exoskeleton-based RAR is to approximate the limb joint angles with the ones of the Exoskeleton -- This approximation is rough since their kinematic structures differ -- Motion capture systems (MOCAPs) can improve the estimations, at the expenses of a considerable overload of the therapy setup -- Alternatively, the Extended Inverse Kinematics Posture Estimation (EIKPE) computational method models the limb and Exoskeleton as differing parallel kinematic chains -- EIKPE has been tested with single DOFmovements of the wrist and elbow joints -- This paper presents the assessment of EIKPEwith elbow-shoulder compoundmovements (i.e., object prehension) -- Ground-truth for estimation assessment is obtained from an optical MOCAP (not intended for the treatment stage) -- The assessment shows EIKPE rendering a good numerical approximation of the actual posture during the compoundmovement execution, especially for the shoulder joint angles -- This work opens the horizon for clinical studies with patient groups, Exoskeleton models, and movements types --
Resumo:
Objective: determine the effect on the disability index of adult patients with benign paroxysmal positional vertigo (BPPV) using vestibular rehabilitation therapy (VRT) and human movement. Subjects: six subjects with an average age of 49.5 ± 14.22 years who have been diagnosed with benign paroxysmal positional vertigo by an otolaryngologist. Instruments: the Dizziness Handicap Inventory and a questionnaire to determine impact on the quality of life of patients with this pathology (Ceballos and Vargas, 2004). Procedure: subjects underwent vestibular therapy for four weeks together with habituation and balance exercises in a semi-supervised manner. Two measurements were performed, one before and one after the vestibular therapy and researchers determined if there was any improvement in the physical, functional, and emotional dimensions. Statistical analysis: descriptive statistics and Student’s t-test of repeated measures were applied to analyze results obtained. Results: significant statistical differences were found in the physical dimension between the pre-test (19.33 ± 4.67 points) and post-test (13 ± 7.24 points) (t = 2.65; p < 0.05). In contrast, no significant statistical differences were found in the functional (t = 2.44; p>0.05), emotional (t = 2.37; p>0.05) or general dimensions (t = 2.55; p>0.05). Conclusion: vestibular therapy with a semi-supervised human movement program improved the index of disability due to vertigo (physical dimension) in BPPV subjects.