979 resultados para continuous model theory


Relevância:

30.00% 30.00%

Publicador:

Resumo:

An important first step in spray combustion simulation is an accurate determination of the fuel properties which affects the modelling of spray formation and reaction. In a practical combustion simulation, the implementation of a multicomponent model is important in capturing the relative volatility of different fuel components. A Discrete Multicomponent (DM) model is deemed to be an appropriate candidate to model a composite fuel like biodiesel which consists of four components of fatty acid methyl esters (FAME). In this paper, the DM model is compared with the traditional Continuous Thermodynamics (CTM) model for both diesel and biodiesel. The CTM model is formulated based on mixing rules that incorporate the physical and thermophysical properties of pure components into a single continuous surrogate for the composite fuel. The models are implemented within the open-source CFD code OpenFOAM, and a semi-quantitative comparison is made between the predicted spray-combustion characteristics and optical measurements of a swirl-stabilised flame of diesel and biodiesel. The DM model performs better than the CTM model in predicting a higher magnitude of heat release rate in the top flame brush region of the biodiesel flame compared to that of the diesel flame. Using both the DM and CTM models, the simulation successfully reproduces the droplet size, volume flux, and droplet density profiles of diesel and biodiesel. The DM model predicts a longer spray penetration length for biodiesel compared to that of diesel, as seen in the experimental data. Also, the DM model reproduces a segregated biodiesel fuel vapour field and spray in which the most abundant FAME component has the longest vapour penetration. In the biodiesel flame, the relative abundance of each fuel component is found to dominate over the relative volatility in terms of the vapour species distribution and vice versa in the liquid species distribution. © 2014 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The work was supported in part by the National Natural Science Foundation of China under Grant 60536010, Grant 60606019, Grant 60777029, and Grant 60820106004, and in part by the National Basic Research Program of China under Grant 2006CB604902, Grant 2006CB302806, and Grant 2006dfa11880.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Rashba spin-orbit splitting of a hydrogenic donor impurity in GaAs/GaAlAs quantum wells is investigated theoretically in the framework of effective-mass envelope function theory. The Rashba effect near the interface between GaAs and GaAlAs is assumed to be a linear relation with the distance from the quantum well side. We find that the splitting energy of the excited state is larger and less dependent on the position of the impurity than that of the ground state. Our results are useful for the application of Rashba spin-orbit coupling to photoelectric devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biomimetic pattern recogntion (BPR), which is based on "cognition" instead of "classification", is much closer to the function of human being. The basis of BPR is the Principle of homology-continuity (PHC), which means the difference between two samples of the same class must be gradually changed. The aim of BPR is to find an optimal covering in the feature space, which emphasizes the "similarity" among homologous group members, rather than "division" in traditional pattern recognition. Some applications of BPR are surveyed, in which the results of BPR are much better than the results of Support Vector Machine. A novel neuron model, Hyper sausage neuron (HSN), is shown as a kind of covering units in BPR. The mathematical description of HSN is given and the 2-dimensional discriminant boundary of HSN is shown. In two special cases, in which samples are distributed in a line segment and a circle, both the HSN networks and RBF networks are used for covering. The results show that HSN networks act better than RBF networks in generalization, especially for small sample set, which are consonant with the results of the applications of BPR. And a brief explanation of the HSN networks' advantages in covering general distributed samples is also given.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a novel mathematical model of neuron-Double Synaptic Weight Neuron (DSWN)(l) is presented. The DSWN can simulate many kinds of neuron architectures, including Radial-Basis-Function (RBF), Hyper Sausage and Hyper Ellipsoid models, etc. Moreover, this new model has been implemented in the new CASSANN-II neurocomputer that can be used to form various types of neural networks with multiple mathematical models of neurons. The flexibility of the DSWN has also been described in constructing neural networks. Based on the theory of Biomimetic Pattern Recognition (BPR) and high-dimensional space covering, a recognition system of omni directionally oriented rigid objects on the horizontal surface and a face recognition system had been implemented on CASSANN-II neurocomputer. In these two special cases, the result showed DSWN neural network had great potential in pattern recognition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe a new model which is based on the concept of cognizing theory. The method identifies subsets of the data which are embedded in arbitrary oriented lower dimensional space. We definite manifold covering in biomimetic pattern recognition, and study its property. Furthermore, we propose this manifold covering algorithm based on Biomimetic Pattern Recognition. At last, the experimental results for face recognition demonstrates that the correct rejection rate of the test samples excluded in the classes of training samples is very high and effective.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on the effective-mass model and the mean-field approximation, we investigate the energy levels of the electron and hole states of the Mn-doped ZnO quantum wires (x=0.0018) in the presence of the external magnetic field. It is found that either twofold degenerated electron or fourfold degenerated hole states split in the field. The splitting energy is about 100 times larger than those of undoped cases. There is a dark exciton effect when the radius R is smaller than 16.6 nm, and it is independent of the effective doped Mn concentration. The lowest state transitions split into six Zeeman components in the magnetic field, four sigma(+/-) and two pi polarized Zeeman components, their splittings depend on the Mn-doped concentration, and the order of pi and sigma(+/-) polarized Zeeman components is reversed for thin quantum wires (R < 2.3 nm) due to the quantum confinement effect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conventional quantum trajectory theory developed in quantum optics is largely based on the physical unravelling of a Lindblad-type master equation, which constitutes the theoretical basis of continuous quantum measurement and feedback control. In this work, in the context of continuous quantum measurement and feedback control of a solid-state charge qubit, we present a physical unravelling scheme of a non-Lindblad-type master equation. Self-consistency and numerical efficiency are well demonstrated. In particular, the control effect is manifested in the detector noise spectrum, and the effect of measurement voltage is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A time-varying controllable fault-tolerant field associative memory model and the realization algorithms are proposed. On the one hand, this model simulates the time-dependent changeability character of the fault-tolerant field of human brain's associative memory. On the other hand, fault-tolerant fields of the memory samples of the model can be controlled, and we can design proper fault-tolerant fields for memory samples at different time according to the essentiality of memory samples. Moreover, the model has realized the nonlinear association of infinite value pattern from n dimension space to m dimension space. And the fault-tolerant fields of the memory samples are full of the whole real space R-n. The simulation shows that the model has the above characters and the speed of associative memory about the model is faster.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, two models of coalition and income's distribution in FSCS (fuzzy supply chain systems) are proposed based on the fuzzy set theory and fuzzy cooperative game theory. The fuzzy dynamic coalition choice's recursive equations are constructed in terms of sup-t composition of fuzzy relations, where t is a triangular norm. The existence of the fuzzy relations in FSCS is also proved. On the other hand, the approaches to ascertain the fuzzy coalition through the choice's recursive equations and distribute the fuzzy income in FSCS by the fuzzy Shapley values are also given. These models are discussed in two parts: the fuzzy dynamic coalition choice of different units in FSCS; the fuzzy income's distribution model among different participators in the same coalition. Furthermore, numerical examples are given aiming at illustrating these models., and the results show that these models are feasible and validity in FSCS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We find that the Rashba spin splitting is intrinsically a nonlinear function of the momentum, and the linear Rashba model may overestimate it significantly, especially in narrow-gap semiconductors. A nonlinear Rashba model is proposed, which is in good agreement with the numerical results from the eight-band k center dot p theory. Using this model, we find pronounced suppression of the D'yakonov-Perel' spin relaxation rate at large electron densities, and a nonmonotonic dependence of the resonance peak position of the electron spin lifetime on the electron density in [111]-oriented quantum wells, both in qualitative disagreement with the predictions of the linear Rashba model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a novel approach for mandarin speech emotion recognition, that is mandarin speech emotion recognition based on high dimensional geometry theory, is proposed. The human emotions are classified into 6 archetypal classes: fear, anger, happiness, sadness, surprise and disgust. According to the characteristics of these emotional speech signals, the amplitude, pitch frequency and formant are used as the feature parameters for speech emotion recognition. The new method called high dimensional geometry theory is applied for recognition. Compared with traditional GSVM model, the new method has some advantages. It is noted that this method has significant values for researches and applications henceforth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on biomimetic pattern recognition theory, we proposed a novel speaker-independent continuous speech keyword-spotting algorithm. Without endpoint detection and division, we can get the minimum distance curve between continuous speech samples and every keyword-training net through the dynamic searching to the feature-extracted continuous speech. Then we can count the number of the keywords by investigating the vale-value and the numbers of the vales in the curve. Experiments of small vocabulary continuous speech with various speaking rate have got good recognition results and proved the validity of the algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanism of hole charge transfer in DNA of various lengths and sequences is investigated based on a partially coherent tunneling theory (Zhang et al., J Chem Phys 117:4578, 2002), where the effects of phase-breaking in adenine-thymine and guanine-cytosine base pairs are treated on equal foot. This work aims at providing a self-consistent microscopic interpretation for rate experiments on various DNA systems. We will also clarify the condition under which the simple superexchange-mediated-hopping picture is valid, and make some comments on the further development of present theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on the introduction of the traditional mathematical models of neurons in general-purpose neurocomputer, a novel all-purpose mathematical model-Double synaptic weight neuron (DSWN) is presented, which can simulate all kinds of neuron architectures, including Radial-Basis-Function (RBF) and Back-propagation (BP) models, etc. At the same time, this new model is realized using hardware and implemented in the new CASSANN-II neurocomputer that can be used to form various types of neural networks with multiple mathematical models of neurons. In this paper, the flexibility of the new model has also been described in constructing neural networks and based on the theory of Biomimetic pattern recognition (BPR) and high-dimensional space covering, a recognition system of omni directionally oriented rigid objects on the horizontal surface and a face recognition system had been implemented on CASSANN-H neurocomputer. The result showed DSWN neural network has great potential in pattern recognition.