950 resultados para conservation zones
Resumo:
Plant storage proteins comprise a major part of the human diet. Sequence analysis has revealed that these proteins probably share a common ancestor with a fungal oxalate decarboxylase and/or related bacterial genes. Additionally, all these proteins share a central core sequence with several other functionally diverse enzymes and binding proteins, many of which are associated with synthesis of the extracellular matrix during sporulation/encystment. A possible prokaryotic relative of this sequence is a bacterial protein (SASP) known to bind to DNA and thereby protect spores from extreme environmental conditions. This ability to maintain cell viability during periods of dehydration in spores and seeds may relate to absolute conservation of residues involved in structure determination.
Resumo:
The development of genetically modified (GM) crops has led the European Union (EU) to put forward the concept of 'coexistence' to give fanners the freedom to plant both conventional and GM varieties. Should a premium for non-GM varieties emerge in the market, 'contamination' by GM pollen would generate a negative externality to conventional growers. It is therefore important to assess the effect of different 'policy variables'on the magnitude of the externality to identify suitable policies to manage coexistence. In this paper, taking GM herbicide tolerant oilseed rape as a model crop, we start from the model developed in Ceddia et al. [Ceddia, M.G., Bartlett, M., Perrings, C., 2007. Landscape gene flow, coexistence and threshold effect: the case of genetically modified herbicide tolerant oilseed rape (Brassica napus). Ecol. Modell. 205, pp. 169-180] use a Monte Carlo experiment to generate data and then estimate the effect of the number of GM and conventional fields, width of buffer areas and the degree of spatial aggregation (i.e. the 'policy variables') on the magnitude of the externality at the landscape level. To represent realistic conditions in agricultural production, we assume that detection of GM material in conventional produce might occur at the field level (no grain mixing occurs) or at the silos level (where grain mixing from different fields in the landscape occurs). In the former case, the magnitude of the externality will depend on the number of conventional fields with average transgenic presence above a certain threshold. In the latter case, the magnitude of the externality will depend on whether the average transgenic presence across all conventional fields exceeds the threshold. In order to quantify the effect of the relevant' policy variables', we compute the marginal effects and the elasticities. Our results show that when relying on marginal effects to assess the impact of the different 'policy variables', spatial aggregation is far more important when transgenic material is detected at field level, corroborating previous research. However, when elasticity is used, the effectiveness of spatial aggregation in reducing the externality is almost identical whether detection occurs at field level or at silos level. Our results show also that the area planted with GM is the most important 'policy variable' in affecting the externality to conventional growers and that buffer areas on conventional fields are more effective than those on GM fields. The implications of the results for the coexistence policies in the EU are discussed. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The objective of this work was to determine the rumen fermentation characteristics of maize land races used as forage in central Mexico. In vitro gas production (ml per 200 mg dry matter (DM)) incubations were carried out, and cumulative gas volumes were fitted to the Krishnamoorthy et al. (1991) model. The trial used a split-plot design with cultivation practices associated with maize colour (COL) as the main plot with three levels: white, yellow and black maize; growing periods (PER) were the split plots where PER1, PER2 and PER3 represented the first, second and third periods, respectively and two contrasting zones (Z1 = valley and Z2 = mountain) were used as blocking factors. The principal effects observed were associated with the maturity of the plants and potential gas production increased (P < 0.05) in stems (PER 1 = 51.8, PER2 = 56.3, PER3 = 58.4 ml per 200 mg DM) and in whole plant (PER 1 = 60.9, PER2 = 60.8, PER3= 70.9 ml per 200 mg DM). An inverse effect was observed with fermentation rates in leaves (P < 0.01) with 0.061, 0.053 and 0.0509 (per h) and in whole plant (P < 0.05) with 0.068, 0.057, 0.050 (per h) in PER1, PER2 and PER3 respectively. The digestibility of the neutral-detergent fibre (NDF) decreased with maturity especially in leaves (P < 0.05) with values of 0.71, 0.67 and 0.66 g/kg; in rachis (P < 0.01) 0.75, 0.72, and 0.65 in PER1, PER2 and PER3 respectively. The NDF content in leaves in leaves (668, 705 and 713 g/kg DM for PER1, PER2 and PER3, respectively), stems (580, 594 and 644 g/kg DM) and, husk (663, 774 and, 808 g/kg DM) increased (P < 0.05) with increasing plant maturity, rachis were significantly different between periods (P < 0.01). The structure with-the best nutritive characteristics was the husk, because it had the lowest fibre contents, especially in acid-detergent lignin, with values of 22.6, 28.6 and 37.6 g/kg DM in PER1, PER2 and PER3, respectively.
Resumo:
The aim of this study is to analyse the vascular flora and the local climate along an altitudinal gradient in the Lefka Ori massif Crete and to evaluate the potential effects of climate change on the plant diversity of the sub-alpine and alpine zones. It provides a quantitative/qualitative analysis of vegetation-environment relationships for four summits along an altitude gradient on the Lefka Ori massif Crete (1664-2339 m). The GLORIA multi-summit approach was used to provide vegetation and floristic data together with temperature records for every summit. Species richness and species turnover was calculated together with floristic similarity between the summits. 70 species were recorded, 20 of which were endemic, belonging to 23 different families. Cretan endemics dominate at these high altitudes. Species richness and turnover decreased with altitude. The two highest summits showed greater floristic similarity. Only 20% of the total flora recorded reaches the highest summit while 10% is common among summits. Overall there was a 4.96 degrees C decrease in temperature along the 675 m gradient. Given a scenario of temperature increase the ecotone between the sub-alpine and alpine zone would be likely to have the greatest species turnover. Southern exposures are likely to be invaded first by thermophilous species while northern exposures are likely to be more resistant to changes. Species distribution shifts will also depend on habitat availability. Many, already threatened, local endemic species will be affected first.
Resumo:
The Sardinian mountain newt Euproctus platycephalus, endemic to the island of Sardinia, (Italy), is considered a rare and threatened species and is classed as critically endangered by IUCN. It inhabits streams, small lakes and pools on the main mountain systems of the island. Threats from climatic and anthropogenic factors have raised concerns for the long-term survival of newt populations on the island. MtDNA sequencing was used to investigate the genetic population structure and phylogeography of this endemic species. Patterns of genetic variation were assessed by sequencing the complete Dloop region and part of the 12SrRNA, from 74 individuals representing four different populations. Analyses of molecular variance suggest that populations are significantly differentiated, and the distribution of haplotypes across the island shows strong geographical structuring. However, phylogenetic analyses also suggest that the Sardinian population consists of two distinct mtDNA groups, which may reflect ancient isolation and expansion events. Population structure, evolutionary history of the species and implications for the conservation of newt populations are discussed.
Resumo:
Due to their confinement to specific hostplants or restricted habitat types, Auchenorrhyncha have the potential to make suitable biological indicators to measure the quality of chalk grassland under different management practices for nature conservation. The Auchenorrhyncha data from a study designed to identify the factors influencing the invertebrate diversity of chalk grasslands in southern England was used to evaluate the potential use of this group of insects as biological indicators. Between 1998 and 2002 altogether 81 chalk grassland sites were sampled. Vegetation structure and composition were recorded, and Auchenorrhyncha were sampled at each site on three occasions in each of two seasons using a ‘Vortis’ suction sampler. Auchenorrhyncha assemblages were then linked to the different grassland plant communities occurring on chalk soils according to the British National Vegetation Classification (NVC). Altogether 96 Auchenorrhyncha species were recorded during the study. Using data on the frequency and dominance of species, as is commonly done for plant communities, it was possible to identify the preferential and differential species of distinct Auchenorrhyncha assemblages. Significant differences between the Auchenorrhyncha assemblages associated with the various chalk grassland plant communities of the NVC were observed down to a level of sub-communities. We conclude that data on Auchenorrhyncha assemblages can provide valuable information for the setting of conservation management priorities, where data on floristic composition alone may not be sufficient, providing additional information on aspects of vegetation structure and condition.
Resumo:
Recent concerns regarding the decline of plant and pollinator species, and the impact on ecosystem functioning, has focused attention on the local and global threats to bee diversity. As evidence for bee declines is now accumulating from over broad taxonomic and geographic scales, we review the role of ecology in bee conservation at the levels of species, populations and communities. Bee populations and communities are typified by considerable spatiotemporal variation; whereby autecological traits, population size and growth rate, and plant-pollinator network architecture all play a role in their vulnerability to extinction. As contemporary insect conservation management is broadly based on species- and habitat-targeted approaches, ecological data will be central to integrating management strategies into a broader, landscape scale of dynamic, interconnected habitats capable of delivering bee conservation in the context of global environmental change.
Resumo:
Hot spots of endemism are regarded as important global sites for conservation as they are rich in threatened endemic species and currently experiencing extensive habitat loss. Targeting pre-emptive conservation action to sites that are currently relatively intact but which would be vulnerable to particular human activities if they occurred in the future is, however, also valuable but has received less attention. Here, we address this issue by using data on Endemic Bird Areas (EBAs). First, we identify the ecological factors that affect extinction risk in the face of particular human activities, and then use these insights to identify EBAs that should be priorities for pre-emptive conservation action. Threatened endemic species in EBAs are significantly more likely to be habitat specialists or relatively large-bodied than non-threatened species, when compared across avian families. Increasing habitat loss causes a significant increase in extinction risk among habitat specialists, but we found no evidence to suggest that the presence of alien species/human exploitation causes a significant increase in extinction risk among large-bodied species. This suggests that these particular human activities are contributing to high extinction risk among habitat specialists, but not among large-bodied species. Based on these analyses, we identify 39 EBAs containing 570 species (24% of the total in EBAs) that are not currently threatened with severe habitat loss, but would be ecologically vulnerable to future habitat loss should it occur. We show that these sites tend to be poorly represented in existing priority setting exercises involving hot spots, suggesting that vulnerability must be explicitly included within these exercises if such sites are to be adequately protected.
Resumo:
The proliferation of designated areas following the implementation of Natura 2000 in Greece has initiated changes in the protected area design and conservation policy making aiming at delivering action for biodiversity and integrative planning on a wider landscape. Following the sustainability concept, an integrative approach cannot realistically take place simply by extending the protected area and designations. The paper addresses public involvement and inter-sectoral coordination as major procedural elements of integrative management and evaluates the nature and strength of their negative or positive influences on the fulfillment of an integrative vision of nature conservation. A review of the history of protected areas and administration developments in Greece provide useful input in the research. The analysis has shown that the selected network of Natura 2000 sites has been superimposed upon the existing system and resulted in duplication of administrative effort and related legislation. As a result the overall picture of protected areas in the country appears complex, confusing and fragmented. Major failures to integrated conservation perspective can be traced to structural causes rooted in politico-economic power structures of mainstream policy and in a rather limited political commitment to conservation. It is concluded that greater realisation. of integrated conservation in Greece necessitates policy reforms related mainly to sectoral legal frameworks to promote environmentalism as well as an increased effort by the managing authorities to facilitate a broader framework of public dialogue and give local communities incentives to sustainably benefit from protected areas. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
1. The establishment of grassy strips at the margins of arable fields is an agri-environment scheme that aims to provide resources for native flora and fauna and thus increase farmland biodiversity. These margins can be managed to target certain groups, such as farmland birds and pollinators, but the impact of such management on the soil fauna has been poorly studied. This study assessed the effect of seed mix and management on the biodiversity, conservation and functional value of field margins for soil macrofauna. 2. Experimental margin plots were established in 2001 in a winter wheat field in Cambridgeshire, UK, using a factorial design of three seed mixes and three management practices [spring cut, herbicide application and soil disturbance (scarification)]. In spring and autumn 2005, soil cores taken from the margin plots and the crop were hand-sorted for soil macrofauna. The Lumbricidae, Isopoda, Chilopoda, Diplopoda, Carabidae and Staphylinidae were identified to species and classified according to feeding type. 3. Diversity in the field margins was generally higher than in the crop, with the Lumbricidae, Isopoda and Coleoptera having significantly more species and/or higher abundances in the margins. Within the margins, management had a significant effect on the soil macrofauna, with scarified plots containing lower abundances and fewer species of Isopods. The species composition of the scarified plots was similar to that of the crop. 4. Scarification also reduced soil- and litter-feeder abundances and predator species densities, although populations appeared to recover by the autumn, probably as a result of dispersal from neighbouring plots and boundary features. The implications of the responses of these feeding groups for ecosystem services are discussed. 5. Synthesis and applications. This study shows that the management of agri-environment schemes can significantly influence their value for soil macrofauna. In order to encourage the litter-dwelling invertebrates that tend to be missing from arable systems, agri-environment schemes should aim to minimize soil cultivation and develop a substantial surface litter layer. However, this may conflict with other aims of these schemes, such as enhancing floristic and pollinator diversity.
Resumo:
Mediterranean ecosystems rival tropical ecosystems in terms of plant biodiversity. The Mediterranean Basin (MB) itself hosts 25 000 plant species, half of which are endemic. This rich biodiversity and the complex biogeographical and political issues make conservation a difficult task in the region. Species, habitat, ecosystem and landscape approaches have been used to identify conservation targets at various scales: ie, European, national, regional and local. Conservation decisions require adequate information at the species, community and habitat level. Nevertheless and despite recent improvements/efforts, this information is still incomplete, fragmented and varies from one country to another. This paper reviews the biogeographic data, the problems arising from current conservation efforts and methods for the conservation assessment and prioritization using GIS. GIS has an important role to play for managing spatial and attribute information on the ecosystems of the MB and to facilitate interactions with existing databases. Where limited information is available it can be used for prediction when directly or indirectly linked to externally built models. As well as being a predictive tool today GIS incorporate spatial techniques which can improve the level of information such as fuzzy logic, geostatistics, or provide insight about landscape changes such as 3D visualization. Where there are limited resources it can assist with identifying sites of conservation priority or the resolution of environmental conflicts (scenario building). Although not a panacea, GIS is an invaluable tool for improving the understanding of Mediterranean ecosystems and their dynamics and for practical management in a region that is under increasing pressure from human impact.
Resumo:
Calcareous grasslands are an important habitat for floral and faunal communities in the UK and Europe. Declines due to changes in management, scrub invasion and agricultural improvement have left much of the remnants of this habitat in a degraded and fragmented state. Grazing, by cattle or sheep, is one of the main management practices used to maintain and improve the floral and faunal quality of calcareous grassland. The long-term impacts of different grazing regimes, however, are poorly understood, particularly in terms of the invertebrate communities. This study contrasted the impacts of recently introduced and long-term sheep or cattle grazing on beetle communities present on one of the largest areas of calcareous grassland in Europe, the Salisbury Plain military training Area, UK. No effects of grazing management on beetle abundance, species. richness or evenness were found, but plant diversity and overall percentage cover of grasses did influence beetle diversity. Proportions of the total number of individuals and overall species richness within beetle guilds (predatory, phytophagous, flower/seed feeders, root feeders and foliage feeders) were strongly influenced by both the duration and type of grazing animal. At the species level, beetle community structure showed significant differences between ungrazed, long-term cattle and long-term sheep grazing treatments. Changes in plant community structure were found to influence beetle community structure. The significance of these results is discussed in terms of the long-term impacts of grazing on beetle community structure, and the benefits of different grazing regimes for the conservation management of calcareous grasslands. (c) 2005 Elsevier Ltd. All rights reserved.