915 resultados para cocktail party problem
Resumo:
The vast majority of putative solutions to the liar paradox face the infamous revenge problem. In recent work, however, Kevin Scharp has extensively developed an exciting and highly novel ‘inconsistency approach’ to the paradox that, he claims, does not face revenge. If Scharp is right, then this represents a significant step forward in our attempts to solve the liar paradox. However, in this paper, I raise a revenge problem that faces Scharp’s inconsistency approach.
Resumo:
What is the impact of the economy on cross national variation in far right-wing party support? This paper tests several hypotheses from existing literature on the results of the last three EP elections in all EU member states. We conceptualise the economy affects support because unemployment heightens the risks and costs that the population faces, but this is crucially mediated by labour market institutions. Findings from multiple regression analyses indicate that unemployment, real GDP growth, debt and deficits have no statistically significant effect on far right-wing party support at the national level. By contrast, labour markets influence costs and risks: where unemployment benefits and dismissal regulations are high, unemployment has no effect, but where either one of them is low, unemployment leads to higher far right-wing party support. This explains why unemployment has not led to far right-wing party support in some European countries that experienced the 2008 Eurozone crisis.
Resumo:
Let X be a locally compact Polish space. A random measure on X is a probability measure on the space of all (nonnegative) Radon measures on X. Denote by K(X) the cone of all Radon measures η on X which are of the form η =
Resumo:
There is something peculiar about aesthetic testimony. It seems more difficult to gain knowledge of aesthetic properties based solely upon testimony than it is in the case of other types of property. In this paper, I argue that we can provide an adequate explanation at the level of the semantics of aesthetic language, without defending any substantive thesis in epistemology or about aesthetic value/judgement. If aesthetic predicates are given a non-invariantist semantics, we can explain the supposed peculiar difficulty with aesthetic testimony.
Resumo:
We establish a general framework for a class of multidimensional stochastic processes over [0,1] under which with probability one, the signature (the collection of iterated path integrals in the sense of rough paths) is well-defined and determines the sample paths of the process up to reparametrization. In particular, by using the Malliavin calculus we show that our method applies to a class of Gaussian processes including fractional Brownian motion with Hurst parameter H>1/4, the Ornstein–Uhlenbeck process and the Brownian bridge.
Resumo:
Satellite based top-of-atmosphere (TOA) and surface radiation budget observations are combined with mass corrected vertically integrated atmospheric energy divergence and tendency from reanalysis to infer the regional distribution of the TOA, atmospheric and surface energy budget terms over the globe. Hemispheric contrasts in the energy budget terms are used to determine the radiative and combined sensible and latent heat contributions to the cross-equatorial heat transports in the atmosphere (AHT_EQ) and ocean (OHT_EQ). The contrast in net atmospheric radiation implies an AHT_EQ from the northern hemisphere (NH) to the southern hemisphere (SH) (0.75 PW), while the hemispheric difference in sensible and latent heat implies an AHT_EQ in the opposite direction (0.51 PW), resulting in a net NH to SH AHT_EQ (0.24 PW). At the surface, the hemispheric contrast in the radiative component (0.95 PW) dominates, implying a 0.44 PW SH to NH OHT_EQ. Coupled model intercomparison project phase 5 (CMIP5) models with excessive net downward surface radiation and surface-to-atmosphere sensible and latent heat transport in the SH relative to the NH exhibit anomalous northward AHT_EQ and overestimate SH tropical precipitation. The hemispheric bias in net surface radiative flux is due to too much longwave surface radiative cooling in the NH tropics in both clear and all-sky conditions and excessive shortwave surface radiation in the SH subtropics and extratropics due to an underestimation in reflection by clouds.
Resumo:
Why has the extreme right Greek Golden Dawn, a party with clear links to fascism experienced a rise defying all theories that claim that such a party is unlikely to win in post-WWII Europe? And, if we accept that economic crisis is an explanation for this, why has such a phenomenon not occurred in other countries that have similar conducive conditions, such as Portugal and Spain? This article addresses this puzzle by (a) carrying out a controlled comparison of Greece, Portugal and Spain and (b) showing that the rise of the extreme right is not a question of intensity of economic crisis. Rather it is the nature of the crisis, i.e. economic versus overall crisis of democratic representation that facilitates the rise of the extreme right. We argue that extreme right parties are more likely to experience an increase in their support when economic crisis culminates into an overall crisis of democratic representation. Economic crisis is likely to become a political crisis when severe issues of governability impact upon the ability of the state to fulfil its social contract obligations. This breach of the social contract is accompanied by declining levels of trust in state institutions, resulting in party system collapse.
Resumo:
4-Dimensional Variational Data Assimilation (4DVAR) assimilates observations through the minimisation of a least-squares objective function, which is constrained by the model flow. We refer to 4DVAR as strong-constraint 4DVAR (sc4DVAR) in this thesis as it assumes the model is perfect. Relaxing this assumption gives rise to weak-constraint 4DVAR (wc4DVAR), leading to a different minimisation problem with more degrees of freedom. We consider two wc4DVAR formulations in this thesis, the model error formulation and state estimation formulation. The 4DVAR objective function is traditionally solved using gradient-based iterative methods. The principle method used in Numerical Weather Prediction today is the Gauss-Newton approach. This method introduces a linearised `inner-loop' objective function, which upon convergence, updates the solution of the non-linear `outer-loop' objective function. This requires many evaluations of the objective function and its gradient, which emphasises the importance of the Hessian. The eigenvalues and eigenvectors of the Hessian provide insight into the degree of convexity of the objective function, while also indicating the difficulty one may encounter while iterative solving 4DVAR. The condition number of the Hessian is an appropriate measure for the sensitivity of the problem to input data. The condition number can also indicate the rate of convergence and solution accuracy of the minimisation algorithm. This thesis investigates the sensitivity of the solution process minimising both wc4DVAR objective functions to the internal assimilation parameters composing the problem. We gain insight into these sensitivities by bounding the condition number of the Hessians of both objective functions. We also precondition the model error objective function and show improved convergence. We show that both formulations' sensitivities are related to error variance balance, assimilation window length and correlation length-scales using the bounds. We further demonstrate this through numerical experiments on the condition number and data assimilation experiments using linear and non-linear chaotic toy models.
Resumo:
We give a comprehensive analysis of the Euler-Jacobi problem of motion in the field of two fixed centers with arbitrary relative strength and for positive values of the energy. These systems represent nontrivial examples of integrable dynamics and are analysed from the point of view of the energy-momentum mapping from the phase space to the space of the integration constants. In this setting, we describe the structure of the scattering trajectories in phase space and derive an explicit description of the bifurcation diagram, i.e., the set of critical value of the energy-momentum map.
Resumo:
The purpose of this paper is to investigate several analytical methods of solving first passage (FP) problem for the Rouse model, a simplest model of a polymer chain. We show that this problem has to be treated as a multi-dimensional Kramers' problem, which presents rich and unexpected behavior. We first perform direct and forward-flux sampling (FFS) simulations, and measure the mean first-passage time $\tau(z)$ for the free end to reach a certain distance $z$ away from the origin. The results show that the mean FP time is getting faster if the Rouse chain is represented by more beads. Two scaling regimes of $\tau(z)$ are observed, with transition between them varying as a function of chain length. We use these simulations results to test two theoretical approaches. One is a well known asymptotic theory valid in the limit of zero temperature. We show that this limit corresponds to fully extended chain when each chain segment is stretched, which is not particularly realistic. A new theory based on the well known Freidlin-Wentzell theory is proposed, where dynamics is projected onto the minimal action path. The new theory predicts both scaling regimes correctly, but fails to get the correct numerical prefactor in the first regime. Combining our theory with the FFS simulations lead us to a simple analytical expression valid for all extensions and chain lengths. One of the applications of polymer FP problem occurs in the context of branched polymer rheology. In this paper, we consider the arm-retraction mechanism in the tube model, which maps exactly on the model we have solved. The results are compared to the Milner-McLeish theory without constraint release, which is found to overestimate FP time by a factor of 10 or more.