985 resultados para coastal groundwater discharge
Resumo:
While New Hanover County is the second smallest county in North Carolina, it is also the second most densely populated with approximately 850 people per square mile. Nestled between the Cape Fear River and Atlantic Ocean with surrounding barrier island beach communities, the County’s geographic location provides a prime vacation destination, as well as an ideal location for residents who wish to live at the water’s edge. Wilmington is the largest city in the County with a population just under 200,000. Most of the Wilmington metropolitan area is developed, creating intense development pressures for the remaining undeveloped land in the unincorporated County. In order to provide development opportunities for mixed use or high density projects within unincorporated New Hanover County where appropriate urban features are in place to support such projects without the negative effects of urban sprawl, County Planning Staff recently developed an Exceptional Design Zoning District (EDZD). Largely based on the LEED for Neighborhood Development program, the EDZD standards were scaled to fit the unique conditions of the County with the goal of encouraging sustainable development while providing density incentives to entice the use of the voluntary district. The incentive for the voluntary zoning district is increased density in areas where the density may not be allowed under normal circumstances. The rationale behind allowing for higher density projects is that development can be concentrated in areas where appropriate urban features are in place to support such projects, and the tendency toward urban sprawl can be minimized. With water quality being of high importance, it is perceived that higher density development will better protect water quality then lower density projects. (PDF contains 4 pages)
Resumo:
There is an unequivocal scientific consensus that increases in greenhouse gases in the atmosphere drive warming temperatures of air and sea, and acidification of the world’s oceans from carbon dioxide absorbed by the oceans. These changes in turn can induce shifts in precipitation patterns, sea level rise, and more frequent and severe extreme weather events (e.g. storms and sea surge). All of these impacts are already being witnessed in the world’s coastal regions and are projected to intensify in years to come. Taken together, these impacts are likely to result in significant alteration of natural habitats and coastal ecosystems, and increased coastal hazards in low-lying areas. They can affect fishers, coastal communities and resource users, recreation and tourism, and coastal infrastructure. Approaches to planned adaptation to these impacts can be drawn from the lessons and good practices from global experience in Integrated Coastal Management (ICM). The recently published USAID Guidebook on Adapting to Coastal Climate Change (USAID 2009) is directed at practitioners, development planners, and coastal management professionals in developing countries. It offers approaches for assessing vulnerability to climate change and climate variability in communities and outlines how to develop and implement adaptation measures at the local and national levels. Six best practices for coastal adaptation are featured in the USAID Guidebook on Adapting to Coastal Climate Change and summarized in the following sections. (PDF contains 3 pages)
Resumo:
The Tanzania Coastal Management Partnership (TCMP) works to implement the National Integrated Coastal Environmental Management Strategy (ICEMS) in Tanzania’s coastal landscapes and seascapes, funded in large measure by the U.S. Agency for International Development. The overarching goal of the Sustainable Coastal Communities and Ecosystems in Tanzania (SUCCESS Tanzania) initiative is to conserve coastal and marine biodiversity while improving the well being of coastal residents through implementation of the Tanzania ICEMS and related ICM policies and strategies. It does this by focusing on three key results: -Policies and Laws that Integrate Conservation and Development Applied -Participatory Landscape Scale Conservation Practiced -Conservation Enterprises Generate Increased and Equitable Benefits from Sustainable Use An additional result sought in the program is gender equity and HIV/AIDS preventive behaviors promoted through communicating HIV/AIDS, environment, and equity messages. (PDF contains 3 pages)
Resumo:
Efficient and effective coastal management decisions rely on knowledge of the impact of human activities on ecosystem integrity, vulnerable species, and valued ecosystem services—collectively, human impact on environmental quality (EQ). Ecosystem-based management (EBM) is an emerging approach to address the dynamics and complexities of coupled social-ecological systems. EBM “is intended to directly address the long-term sustainable delivery of ecosystem services and the resilience of marine ecosystems to perturbations” (Rosenberg and Sandifer, 2009). The lack of a tool that integrates human choices with the ecological connections between contributing watersheds and nearshore areas, and that incorporates valuation of ecosystem services, is a critical missing piece needed for effective and efficient coastal management. To address the need for an integrative tool for evaluation of human impacts on ecosystems and their services, Battelle developed the EcoVal™ Environmental Quality Evaluation System. The EcoVal system is an updated (2009) version of the EQ Evaluation System for Water Resources developed by Battelle for the U.S. Bureau of Reclamation (Dee et al., 1972). The Battelle EQ evaluation system has a thirty-year history of providing a standard approach to evaluate watershed EQ. This paper describes the conceptual approach and methodology of the updated EcoVal system and its potential application to coastal ecosystems. (PDF contains 4 pages)
Resumo:
The rate of sea level change has varied considerably over geological time, with rapid increases (0.25 cm yr-1) at the end of the last ice age to more modest increases over the last 4,000 years (0.04 cm yr-1; Hendry 1993). Due to anthropogenic contributions to climate change, however, the rate of sea level rise is expected to increase between 0.10 and 0.25 cm year-1 for many coastal areas (Warrick et al. 1996). Notwithstanding, it has been predicted that over the next 100 years, sea levels along the northeastern coast of North Carolina may increase by an astonishing 0.8 m (0.8 cm yr-1); through a combination of sea-level rise and coastal subsidence (Titus and Richman 2001; Parham et al. 2006). As North Carolina ranks third in the United States with land at or just above sea level, any additional sea rise may promote further deterioration of vital coastal wetland systems. (PDF contains 4 pages)
Resumo:
The South Carolina Coastal Information Network (SCCIN) emerged as a result of a number of coastal outreach institutions working in partnership to enhance coordination of the coastal community outreach efforts in South Carolina. This organized effort, led by the S.C. Sea Grant Consortium and its Extension Program, includes partners from federal and state agencies, regional government agencies, and private organizations seeking to coordinate and/or jointly deliver outreach programs that target coastal community constituents. The Network was officially formed in 2006 with the original intention of fostering intra-and inter- agency communication, coordination, and cooperation. Network partners include the S.C. Sea Grant Consortium, S.C. Department of Health and Environmental Control – Office of Ocean and Coastal Resource Management and Bureau of Water, S.C. Department of Natural Resources – ACE Basin National Estuarine Research Reserve, North Inlet-Winyah Bay National Estuarine Research Reserve, Clemson University Cooperative Extension Service and Carolina Clear, Berkeley-Charleston-Dorchester Council of Governments, Waccamaw Regional Council of Governments, Urban Land Institute of South Carolina, S.C. Department of Archives and History, the National Oceanic and Atmospheric Administration – Coastal Services Center and Hollings Marine Laboratory, Michaux Conservancy, Ashley-Cooper Stormwater Education Consortium, the Coastal Waccamaw Stormwater Education Consortium, the S.C. Chapter of the U.S. Green Building Council, and the Lowcountry Council of Governments. (PDF contains 3 pages)
Resumo:
This report wi11 focus largely on the suborders Gammaridea, Caprellidea, and Hyperiidea because of their importance in coastal areas of the northeast Pacific Ocean. (PDF contains 27 pages)
Resumo:
(PDF contains 24 pages)
Resumo:
The bay anchovy occurs along the Atlantic and Gulf of Mexico coasts, from Cape Cod, Massachusetts, to Yucatan, Mexico (Hildebrand 1963), except for the Florida Keys where it is apparently absent (Daly 1970). (PDF contains 22 pages)
Resumo:
(PDF contains 24 pages)
Resumo:
Three genetically distinct groups: British Columbia to northern California, Southern California to the northern Baja peninsula, and central and southern Baja California. (PDF contains 21 pages)
Resumo:
The authors present quantitative information on the shrimp resources of Sierra Leone waters. Four of the nine species present have been studied, of which Paenaeus duorarum notialis is dominant in the fishery. Synoptic surveys were undertaken in June 1977, and March 1978, to determine the abundance of the shrimp stock on the inshore shelf. The temperature-salinity-depth curves for the fishing ground show the existence of three water masses. The majority of fish caught were sciaenids, with some sparids also being taken. Detailed discussion of distribution and abundance of individual species of shrimp is given. The surveys have shown that the Banana Islands are the most productive shrimp grounds in the country, and the authors believe that they can support a viable shrimp industry for several years to come at present rates of exploitation
Resumo:
Microwave noise emission at the harmonics of the electron cyclotron frequency from the magnetized plasma column of a Penning discharge is investigated experimentally. The harmonic emission spectrum is observed using oxygen gas in a variety of discharge configurations. It is found that grid stabilization of the plasma column has very little effect on the emission spectrum. Measurements of the shape and location of the harmonic emission lines are described in detail. On the basis of a microwave interferometer measurement of the electron density, it is concluded that the existence of a hybrid layer somewhere on the plasma column is a necessary condition for the observation of harmonic emission. The relaxation time and the cathode voltage dependence of the harmonic emission are investigated using a pulse modulation technique. It is found that the emission intensity increases rapidly with the magnitude of the cathode voltage and that the relaxation time decreases with increasing neutral gas pressure. High intensity nonharmonic radiation is observed and identified as resulting from a beam-plasma wave instability thereby eliminating the same instability as a possible source of the harmonic emission. It is found that the collective experimental results are in reasonable agreement with the single particle electrostatic radiation theory of Canobbio and Croci.
Resumo:
The Azraq oasis lies in the Jordanian desert, about 85 km east of Amman. In this brief paper the author summarises his observations from a visit to the oasis in 1991, discusses the effects of pumping groundwater from the oasis to Amman and presents results from a plankton survey.
Resumo:
This thesis describes investigations of two classes of laboratory plasmas with rather different properties: partially ionized low pressure radiofrequency (RF) discharges, and fully ionized high density magnetohydrodynamically (MHD)-driven jets. An RF pre-ionization system was developed to enable neutral gas breakdown at lower pressures and create hotter, faster jets in the Caltech MHD-Driven Jet Experiment. The RF plasma source used a custom pulsed 3 kW 13.56 MHz RF power amplifier that was powered by AA batteries, allowing it to safely float at 4-6 kV with the cathode of the jet experiment. The argon RF discharge equilibrium and transport properties were analyzed, and novel jet dynamics were observed.
Although the RF plasma source was conceived as a wave-heated helicon source, scaling measurements and numerical modeling showed that inductive coupling was the dominant energy input mechanism. A one-dimensional time-dependent fluid model was developed to quantitatively explain the expansion of the pre-ionized plasma into the jet experiment chamber. The plasma transitioned from an ionizing phase with depressed neutral emission to a recombining phase with enhanced emission during the course of the experiment, causing fast camera images to be a poor indicator of the density distribution. Under certain conditions, the total visible and infrared brightness and the downstream ion density both increased after the RF power was turned off. The time-dependent emission patterns were used for an indirect measurement of the neutral gas pressure.
The low-mass jets formed with the aid of the pre-ionization system were extremely narrow and collimated near the electrodes, with peak density exceeding that of jets created without pre-ionization. The initial neutral gas distribution prior to plasma breakdown was found to be critical in determining the ultimate jet structure. The visible radius of the dense central jet column was several times narrower than the axial current channel radius, suggesting that the outer portion of the jet must have been force free, with the current parallel to the magnetic field. The studies of non-equilibrium flows and plasma self-organization being carried out at Caltech are relevant to astrophysical jets and fusion energy research.