978 resultados para certified reference values


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O objetivo deste trabalho foi validar, pela técnica de PCR quantitativo em tempo real (RT-qPCR) genes para serem utilizados como referência em estudos de expressão gênica em soja, em ensaios de estresse hídrico. Foram avaliados quatro genes comumente utilizados em soja: Gmβ-actin, GmGAPDH, GmLectin e GmRNAr18S. O RNA total foi extraído de seis amostras: três amostras de raízes em sistema de hidroponia com diferentes intensidades de déficit hídrico (0, 25, 50, 75 e 100 minutos de estresse hídrico), e três amostras de folhas de plantas cultivadas em areia com diferentes umidades do solo (15, 5 e 2,5% de umidade gravimétrica). Os dados brutos do intervalo cycle threshold (Ct) foram analisados, e a eficiência de cada iniciador foi calculada para uma analise da Ct entre as diferentes amostras. A aplicação do programa GeNorm foi utilizada para a avaliação dos melhores genes de referência, de acordo com a estabilidade. O GmGAPDH foi o gene menos estável, com o maior valor médio de estabilidade de expressão (M), e os genes mais estáveis, com menor valor de M, foram o Gmβ-actin e GmRNAr18S, tanto nas amostras de raízes como nas de folhas. Estes genes podem ser usados em RT-qPCR como gens de referência para análises de expressão gênica.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method has been developed for the direct and simultaneous determination of As, Cu, Mn, Sb, and Se in drinking water by electrothermal atomic absorption spectrometry (ETAAS) using a transversely heated graphite tube atomizer (THGA) with longitudinal Zeeman-effect back- ground correction. The thermal behavior of analytes during the pyrolysis and atomization stages was investigated in 0.028 mol L-1 HNO3, 0.14 mol L-1 HNO3 and 1 + 1 (v/v) diluted water using mixtures of Pd(NO3)(2) + Mg(NO3)(2) as the chemical modifier, With 5 mug Pd + 3 mug Mg as the modifier, the pyrolysis and atomization temperatures of the heating program of the atomizer were fixed at 1400degreesC and 2100degreesC, respectively, and 20 muL of the water sample (sample + 0.28 mol L-1 HNO3, 1 + 1, v/v), dispensed into the graphite tube, analytical curves were established ranging from 5.00 - 50.0 mug L-1 for As, Sb, Se; 10.0 - 100 mug L-1 for Cu; and 20.0 - 200 mug L-1 for Mn. The characteristic masses were around 39 pg As, 17 pg Cu, 60 pg Mn, 43 pg Sb, and 45 pg Se, and the lifetime of the tube was around 500 firings. The limits of detection (LOD) based on integrated absorbance (0.7 mug L-1 As, 0.2 mug L-1 Cu, 0.6 mug L-1 Mn, 0.3 mug L-1 Sb, 0.9 mug L-1 Se) exceeded the requirements of the Brazilian Food Regulations (decree # 310-ANVS from the Health Department), which established the maximum permissible level for As, Cu, Mn, Sb, and Se at 50 mug L-1, 1000 mug L-1, 2000 mug L-1, 5 mug L-1, and 50 mug L-1, respectively. The relative standard deviations (n = 12) were typically < 5.3% for As, < 0.5% for Cu, < 2.1% for Mn, < 11.7% for Sb, and < 9.2% for Se. The recoveries of As, Cu, Mn, Sb, and Se added to the mineral water samples varied from 102-111%, 91-107%, 92-109%, 89-97%, and 101-109%, respectively. Accuracy for the determination of As, Cu, Mu Sb and Se was checked using standard reference materials NIST SRM 1640 - Trace Elements in Natural Water, NIST SRM 1643d - Trace Elements in Water, and 10 mineral water samples. A paired t-test showed that the results were in agreement with the certified values of the standard reference materials at the 95% confidence level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The yeast Saccharomyces cerevisiae was immobilized in cubes of polyurethane foam and the ability of this immobilized material to separate Sb(III) and Sb(V) was investigated. A method based on sequential determination of total Sb (after on-line reduction of Sb(V) to Sb(III) with thiourea) and Sb(Ill) (after on-line solid-liquid phase extraction) by hydride generation inductively coupled plasma optical emission spectrometry is proposed. A flow system assembled with solenoid valves was used to manage all stages of the process. The effects of pH, sample loading and elution flow rates on solid-liquid phase extraction of Sb(III) were evaluated. Also, the parameters related to online pre-reduction (reaction coil and flow rates) were optimized. Detection limits of 0.8 and 0.15 mu g L-1 were obtained for total Sb and Sb (III), respectively. The proposed method was applied to the analysis of river water and effluent samples. The results obtained for the determination of total Sb were in agreement with expected values, including the river water Standard Reference Material 1640 certified by the National Institute of Standards and Technology (NIST). Recoveries of Sb(III) and Sb(V) in spiked samples were between 81 19 and I I I 15% when 120 s of sample loading were used. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bismuth was evaluated as an internal standard for the direct determination of Pb in vinegar by graphite furnace atomic absorption spectrometry using Ru as a permanent modifier with co-injection of Pd/Mg(NO3)(2). The correlation coefficient of the graph plotted from the non-nalized absorbance signals of Bi versus Pb was r=0.989. Matrix effects were evaluated by analyzing the slope ratios between the analytical curve, and analytical curves obtained from Pb additions in red and white wine vinegar obtained from reference solutions prepared in 0.2% (v/v) HNO3, samples. The calculated ratios were around 1.04 and 1.02 for analytical curves established applying an internal standard and 1.3 and 1.5 for analvtical curves without. Analytical curves in the 2.5-15 pg L-1 Pb concentration interval were established using the ratio Pb absorbance to Bi absorbance versus analvte concentration, and typical linear correlations of r=0.999 were obtained. The proposed method was applied for direct determination of Pb in 18 commercial vinegar samples and the Pb concentration varied from 2.6 to 31 pg L-1. Results were in agreement at a 95% confidence level (paired t-test) with those obtained for digested samples. Recoveries of Pb added to vinegars varied from 96 to 108% with and from 72 to 86% without an internal standard. Two water standard reference materials diluted in vinegar sample were also analyzed and results were in agreement with certified values at a 95% confidence level. The characteristic mass was 40 pg Pb and the useful lifetime of the tube was around 1600 firings. The limit of detection was 0.3 mu g L-1 and the relative standard deviation was <= 3.8% and <= 8.3% (n = 12) for a sample containing, 10 mu L-1 Pb with and without internal standard, respectively. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, a preconcentration and separation system based on continuous flow hydride generation is proposed to improve the determination of As and Se by total reflection X-ray fluorescence spectrometry. The generated hydrides are continuously separated from the liquid phase and collected in a chamber containing 250 mul of HCI/HNO3 1:1 (v/v) solution. Hydride generation conditions and collection of the hydrides were evaluated. Under optimised conditions, enrichment factors of 55 for As and 82 for Se were attained. Detection limits of 0.3 mug l(-1) for As and Se were obtained when 20 ml of sample was used. Analysis of a natural water standard reference material from National Institute of Standard and Technology (SRM-1640) was in agreement with the certified values at the 95% confidence level. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ANALYSIS OF CLAYS BY INDUCTIVELY COUPLED PLASMA OPTICAL EMISSION SPECTROMETRY AFTER CLOSED-VESSEL MICROWAVE-ASSISTED ACID DECOMPOSITION. In this work a closed-vessel microwave-assisted acid decomposition procedure for clays was developed. Aluminum, Ca, Fe, K, Mg, Na, Si, and Ti were determined in clay digestates by inductively coupled plasma optical emission spectrometry. The most critical parameter for total decomposition of clays was the composition of the reagent mixture. The applied power and the heating time exerted a less critical influence. Best decomposition conditions were attained using a reagent mixture containing 4 mL aqua regia plus 3 mL HF and the heating program was implemented in 12 min. The accuracy of the results was demonstrated using two standard reference materials and a paired t-test showed a good agreement between determined and certified values at a 95% confidence level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A flow-injection (FI) system to match concentrations was used as an auto-diluter in multielement determination by inductively coupled plasma-mass spectrometry (ICP-MS). The flow system comprised loop-based injection or a timed valve that introduced a variable sample volume info a spray chamber through a standard Meinhard nebulizer of an ICP-MS. Routinely analyzed samples such as water, plant, and steel were selected. The accuracy of multielement determination was checked against water standard reference material from the National Institute of Standards and Technology (1643d), plant standard reference material from the National Bureau of Standards (1572 citrus leaves), and steel standard reference material from the National Bureau of Standards (AISI 4340). The measuring system was calibrated with a multielement solution, yielding a linear plot with good precision [relative standard deviation (RSD) < 3%, n = 12]. The results were in agreement at a 95% confidence level with the certified values for the reference materials and also with those obtained by continuous aspiration and by (FI) with a discrete volume. (C) 1999 John Wiley & Sons, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new method was developed for the simultaneous determination of As, Bi, Sb, and Se by flow injection hydride generation graphite furnace atomic absorption spectrometry. An alternative two-step sample treatment procedure was used. The sample was heated (80degreesC) for 10 min in 6 M HCl to reduce Se(VI) to Se(IV), followed by the addition of 1% (m/v) thiourea solution to reduce arsenic and antimony from the pentavalent to the trivalent states.With this procedure, all analytes were converted to their most favorable and sensitive oxidation states to generate the corresponding hydrides. The pre-treated sample solution was then processed in the flow system for in situ trapping and atomization in a graphite tube coated with iridium. The impermanent modifier remained stable up to 300 firings and new coating out significant were possible wit changes in the analytical performance.The accuracy was checked for As, Bi, Sb, and Se determination in water standard reference materials NIST 1640 and 1643d and the results were in agreement with the certified values at a 95% confidence level. Good recoveries (94-104%.) of spiked mineral waters and synthetic As(V), Sb(Ill), mixtures of As(Ill), Sb(V), Se(VI), and Se(IV) were also found. Calculated characteristic masses were 32 mug As, 79 mug Bi, 35 mug Sb, and 130 pg Se, and the corresponding limits of detection were 0.06, 0.16, 0.19, and 0.59 mug L-1, respectively. The repeatability for a typical solution containing 5 mug L-1 As, Bi, Sb, and Se was in the 1-3% range.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Arsenic and germanium have been evaluated as internal standards to minimize matrix effects on the direct determination of selenium in milk by graphite furnace atomic absorption spectrometry (GFAAS) using tubes with integrated platform, pre-treated with W together with I'd as chemical modifier. The efficiency of As and Ge as internal standards for 25 mu g L-1 Se plus 500 mu g (L)-1 As or Ge in diluted (1 + 9 v/v) milk plus 1.0% (v/v) HNO3 was evaluated by means of correlation graphs plotted from the normalized absorbance signals (n = 20) of internal standard (axis gamma) versus analyte (axis x). The equations that describe the linear regression were: A(As)= - 0.004 +/- 0.019 +/- 1.02 + 0.019 A(Se) (r=0.9967 +/- 0.005); A(Ge)= - 0.0 17 +/- 0.015 + 1.01 +/- 0.015 A(Se) (r = 0.9978 +/- 0.004). Samples and reference solutions were automatically spiked with 500 mu g L-1 Ge or As and 1.0% (v/v) HNO3 by the autosampler. For 20 mu L of aqueous standard solutions, analytical curves in the 5.00-40.0 mu g L-1 Se range were established using the ratio of Se absorbance to internal standard absorbance (A(Se)A(IS)) versus analyte concentration, and good linear correlations were obtained. The characteristic mass was 40 pg Se. Limits of detection were 0.55 and 0.40 mu g L-1 with As and Ge as the internal standard, respectively. Relative standard deviations (RSD) for a sample containing 25 mu g L-1 Se were 1.2% and 1.0% (n = 12) using As and Ge, respectively. The RSD without internal standardization was about 6%. The accuracy of the proposed method was evaluated by an addition-recovery experiment and all recovered values were in the 99-105% range with IS and in the 70-80% range without IS. Using Ge as the internal standard, results of analysis of standard reference materials were in agreement with certified values at a 95% confidence level. The selenium concentration for 10 analyzed milk samples varied from 5.0 to 20 mu g L-1. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An on-line dialysis flow system coupled to inductively coupled plasma mass spectrometry to determine trace elements in serum samples by isotope dilution is presented. Isotope dilution was performed on samples incubated with enriched Cu-65, Zn-66, Se-77 and Pb-206 for 24 h at 36degreesC prior to dialysis to quantified total element concentrations. The sample and acceptor solutions flowed through the dialysis unit with cellophane membrane placed in between the compartments. The serum sample (1 mL) was left to recycle in a closed path while the acceptor solution was continuously pumped along the dialyzer channel and through a cationic AG50W X-8 resin column. After 10 min, around 70% of Na, K and Cl migrate from the sample. Three replicate injections of 0.1 mL were performed for the clean sample after each separation step. The on-line coupling of the dialyzer to ICP-MS allowed isotope dilution for total element determination either in the cleaned sample or by eluting the cations retained in the resin to be carried out. Results demonstrated no matrix effects from alkaline elements or spectral interference from ArNa+ on Cu-63, ArCl+ on Se-77 and (SO2+)-S-34 on Zn-66. The precision of isotope ratio measurements for Cu and Zn was around 1% and for Se and Pb was around 2.5%. The values found for the reference serum sample IMEP-17 were in good agreement with the certified values for Cu, Zn and Se.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this work is to propose a flow spectrophotometric procedure for manganese determination in steel based on electrochemical oxidation of Mn(II) to Mn(VII) at a Pt electrode surface by means of the catalytic effect of Ag(I). The on-line oxidation step was obtained by injecting sample and electrolyte solution directly into an electrolytic cell. After electrolysis, the injectate was homogenized by bubbling air. The permanganate ions produced were passed through the spectrophotometer where absorbance was monitored at 545 nm. Effects of direct current, silver concentration, timing, flow rates, concentration and composition of support electrolyte were investigated. Direct current and silver content manifested themselves as the most relevant parameters. For determination of manganese in the 5.00 - 150 mg L -1 range (r=0,9998) and 60 s electrolysis time, the sample throughput was 20 h -1. Accuracy was assessed by analyzing ten steel standard reference materials. Results are precise (R.S.D. <3%) and in agreement with certified values of reference materials and with standard methods at 95% confidence level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new strategy for minimization of Cu2+ and Pb2+ interferences on the spectrophotometric determination of Cd2+ by the Malachite green (MG)-iodide reaction using electrolytic deposition of interfering species and solid phase extraction of Cd2+ in flow system is proposed. The electrolytic cell comprises two coiled Pt electrodes concentrically assembled. When the sample solution is electrolyzed in a mixed solution containing 5% (v/v) HNO3, 0.1% (v/v) H2SO4 and 0.5 M NaCl, Cu2+ is deposited as Cu on the cathode, Pb2+ is deposited as PbO2 on the anode while Cd2+ is kept in solution. After electrolysis, the remaining solution passes through an AG1-X8 resin (chloride form) packed minicolumn in which Cd2+ is extracted as CdCl4/2-. Electrolyte compositions, flow rates, timing, applied current, and electrolysis time was investigated. With 60 s electrolysis time, 0.25 A applied current, Pb2+ and Cu2+ levels up to 50 and 250 mg 1-1, respectively, can be tolerated without interference. For 90 s resin loading time, a linear relationship between absorbance and analyte concentration in the 5.00-50.0 μg Cd 1-1 range (r2 = 0.9996) is obtained. A throughput of 20 samples per h is achieved, corresponding to about 0.7 mg MG and 500 mg KI and 5 ml sample consumed per determination. The detection limit is 0.23 μg Cd 1-1. The accuracy was checked for cadmium determination in standard reference materials, vegetables and tap water. Results were in agreement with certified values of standard reference materials and with those obtained by graphite furnace atomic absorption spectrometry at 95% confidence level. The R.S.D. for plant digests and water containing 13.0 μg Cd 1-1 was 3.85% (n = 12). The recoveries of analyte spikes added to the water and vegetable samples ranged from 94 to 104%. (C) 2000 Elsevier Science B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method has been developed for the direct and simultaneous determination of As, Cu, Mn, Sb, and Se in drinking water by electrothermal atomic absorption spectrometry (ETAAS) using a transversely heated graphite tube atomizer (THGA) with longitudinal Zeeman-effect background correction. The thermal behavior of analytes during the pyrolysis and atomization stages was investigated in 0.028 mol L-1 HNO3, 0.14 mol L-1 HNO3 and 1 + 1 (v/v) diluted water using mixtures of Pd(NO3)2 + Mg(NO3)2 as the chemical modifier. With 5 μg Pd + 3 μg Mg as the modifier, the pyrolysis and atomization temperatures of the heating program of the atomizer were fixed at 1400°C and 2100°C, respectively, and 20 μL of the water sample (sample + 0.28 mol L-1 HNO3, 1 + 1, v/v), dispensed into the graphite tube, analytical curves were established ranging from 5.00 -50.0 μg L-1 for As, Sb, Se; 10.0 - 100 μg L-1 for Cu; and 20.0 - 200 μg L-1 for Mn. The characteristic masses were around 39 pg As, 17 pg Cu, 60 pg Mn, 43 pg Sb, and 45 pg Se, and the lifetime of the tube was around 500 firings. The limits of detection (LOD) based on integrated absorbance (0.7 μg L-1 As, 0.2 μg L-1 Cu, 0.6 μg L-1 Mn, 0.3 μg L-1 Sb, 0.9 μg L-1 Se) exceeded the requirements of the Brazilian Food Regulations (decree # 310-ANVS from the Health Department), which established the maximum permissible level for As, Cu, Mn, Sb, and Se at 50 μg L-1, 1000 μg L-1, 2000 μg L-1, 5 μg L-1, and 50 μg L-1, respectively. The relative standard deviations (n = 12) were typically < 5.3% for As, < 0.5% for Cu, < 2.1% for Mn, < 11.7% for Sb, and < 9.2% for Se. The recoveries of As, Cu, Mn, Sb, and Se added to the mineral water samples varied from 102-111%, 91-107%, 92-109%, 89-97%, and 101-109%, respectively. Accuracy for the determination of As, Cu, Mn, Sb, and Se was checked using standard reference materials NIST SRM 1640 - Trace Elements in Natural Water, NIST SRM 1643d - Trace Elements in Water, and 10 mineral water samples. A paired t-test showed that the results were in agreement with the certified values of the standard reference materials at the 95% confidence level.