984 resultados para cement kiln
Resumo:
The dolomite veins making up rhythmites common in burial dolomites are not cement infillings of supposed cavities, as in the prevailing view, but are instead displacive veins, veins that pushed aside the host dolostone as they grew. Evidence that the veins are displacive includes a) small transform-fault-like displacements that could not have taken place if the veins were passive cements, and b) stylolites in host rock that formed as the veins grew in order to compensate for the volume added by the veins. Each zebra vein consists of crystals that grow inward from both sides, and displaces its walls via the local induced stress generated by the crystal growth itself. The petrographic criterion used in recent literature to interpret zebra veins in dolomites as cements - namely, that euhedral crystals can grow only in a prior void - disregards evidence to the contrary. The idea that flat voids did form in dolostones is incompatible with the observed optical continuity between the saddle dolomite euhedra of a vein and the replacive dolomite crystals of the host. The induced stress is also the key to the self-organization of zebra veins: In a set of many incipient, randomly-spaced, parallel veins just starting to grow in a host dolostone, each vein¿s induced stress prevents too-close neighbor veins from nucleating, or redissolves them by pressure-solution. The veins that survive this triage are those just outside their neighbors¿s induced stress haloes, now forming a set of equidistant veins, as observed.
Resumo:
BACKGROUND: The rotator cuff muscles are the main stabilizer of the glenohumeral joint. After total shoulder arthroplasty using anterior approaches, a dysfunction of the subscapularis muscle has been reported. In the present paper we tested the hypothesis that a deficient subscapularis following total shoulder arthroplasty can induce joint instability. METHODS: To test this hypothesis we have developed an EMG-driven musculoskeletal model of the glenohumeral joint. The model was based on an algorithm that minimizes the difference between measured and predicted muscular activities, while satisfying the mechanical equilibrium of the glenohumeral joint. A movement of abduction in the scapular plane was simulated. We compared a normal and deficient subscapularis. Muscle forces, joint force, contact pattern and humeral head translation were evaluated. FINDINGS: To satisfy the mechanical equilibrium, a deficient subscapularis induced a decrease of the force of the infraspinatus muscle. This force decrease was balanced by an increase of the supraspinatus and middle deltoid. As a consequence, the deficient subscapularis induced an upward migration of the humeral head, an eccentric contact pattern and higher stress within the cement. INTERPRETATION: These results confirm the importance of the suscapularis for the long-term stability of total shoulder arthroplasty.
Resumo:
With the implementation of the 2000 Q-MC specification, an incentive is provided to produce an optimized gradation to improve placement characteristics. Also, specifications for slip-formed barrier rail have changed to require an optimized gradation. Generally, these optimized gradations have been achieved by blending an intermediate aggregate with the coarse and fine aggregate. The demand for this intermediate aggregate has been satisfied by using crushed limestone chips developed from the crushing of the parent concrete stone. The availability, cost, and physical limitations of crushed limestone chips can be a concern. A viable option in addressing these concerns is the use of gravel as the intermediate aggregate. Unfortunately, gravels of Class 3I durability are limited to a small geographic area in Mississippi river sands north of the Rock River. Class 3 or Class 2 durability gravels are more widely available across the state. The durability classification of gravels is based on the amount and quality of the carbonate fraction of the material. At present, no service histories or research exists to assess the impact of using Class 3 or 2 durability gravels would have on the long-term durability of Portland cement concrete (PCC) pavement requiring Class 3I aggregate.
Resumo:
This report presents the results of the largest and most comprehensive study to date on portland cement pervious concrete (PCPC). It is designed to be widely accessible and easily applied by designers, producers, contractors, and owners. The project was designed to begin with pervious concrete best practices and then to address the unanswered questions in a systematic fashion to allow a successful overlay project. Consequently, the first portion of the integrated project involved a combination of fundamental material property investigations, test method development, and addressing constructability issues before actual construction could take place. The second portion of the project involved actual construction and long-term testing before reporting successes, failures, and lessons learned. The results of the studies conducted show that a pervious concrete overlay can be designed, constructed, operated, and maintained. A pervious concrete overlay has several inherent advantages, including reduced splash and spray and reduced hydroplaning potential, as well as being a very quiet pavement. The good performance of this overlay in a particularly harsh freeze-thaw climate, Minnesota, shows pervious concrete is durable and can be successfully used in freeze-thaw climates with truck traffic and heavy snow plowing.
Resumo:
The main objective of this study was to evaluate the hydraulic performance of riprap spurs and weirs in controlling bank erosion at the Southern part of the Raccoon River upstream U.S. Highway 169 Bridge utilizing the commercially available model FESWMS and field monitoring. It was found based on a 2 year monitoring and numerical modeling that the design of structures was overall successful, including their spacing and stability. The riprap material incorporated into the structures was directly and favorably correlated to the flow transmission through the structure, or in other words, dictated the permeable nature of the structure. It was found that the permeable dikes and weirs chosen in this study created less volume of scour in the vicinity of the structure toes and thus have less risk comparatively to other impermeable structures to collapse. The fact that the structures permitted the transmission of flow through them it allowed fine sand particles to fill in the gaps of the rock interstices and thus cement and better stabilize the structures. During bank-full flows the maximum scour hole was recorded away from the structures toe and the scourhole size was directly related to the protrusion angle of the structure to the flow. It was concluded that the proposed structure inclination with respect to the main flow direction was appropriate since it provides maximum bank protection while creating the largest volume of local scour away from the structure and towards the center of the channel. Furthermore, the lowest potential for bank erosion also occurs with the present set-up design chosen by the IDOT. About 2 ft of new material was deposited in the area located between the structures for the period extending from the construction day to May 2007. Surveys obtained by sonar and the presence of vegetation indicate that new material has been added at the bank toes. Finally, the structures provided higher variability in bed topography forming resting pools, creating flow shade on the leeward side of the structure, and separation of bed substrate due to different flow conditions. Another notable environmental benefit to rock riprap weirs and dikes is the creation of resting pools, especially in year 2007 (2nd year of the project). The magnitude of these benefits to aquatic habitat has been found in the literature that is directly related to the induced scour-hole volume.
Resumo:
Data collection to determine the rate of bond strength development between concrete overlays and existing pavements and the evaluation of nondestructive testing methods for determining concrete strength were the objectives of this study. Maturity meters and pulse velocity meters were employed to determine the rate of flexural strength gain and determine the time for opening of newly constructed pavements to traffic. Maturity measurements appear to provide a less destructive method of testing. Pulse velocity measurements do require care in the preparation of the test wells and operator care in testing. Both devices functioned well under adverse weather and construction conditions and can reduce construction traffic delay decisions. Deflection testing and strain gaging indicate differences in the reaction of the overlay and existing pavement under grouting versus nongrouted sections. Grouting did enhance the rate of bond development with Type I11 cement out performing the Type I1 grout section. Type I11 and Type I1 cement grouts enhanced resistance to cracking in uniformly supported pavements where joints are prepared prior to overlays achieving target flexural strengths. Torsional and direct shear testing provide additional ways of measuring bond development at different cure times. Detailed data analysis will be utilized by TRANSTEC, Inc. to develop a bonded overlay construction guidelines report.
Resumo:
With the support of the Iowa Fly Ash Affiliates, research on reclaimed fly ash for use as a construction material has been ongoing since 1991. The material exhibits engineering properties similar to those of soft limestone or sandstone and a lightweight aggregate. It is unique in that it is rich in calcium, silica, and aluminum and exhibits pozzolanic properties (i.e. gains strength over time) when used untreated or when a calcium activator is added. Reclaimed Class C fly ashes have been successfully used as a base material on a variety of construction projects in southern and western Iowa. A pavement design guide has been developed with the support of the Iowa Fly Ash Affiliates. Soils in Iowa generally rate fair to poor as subgrade soils for paving projects. This is especially true in the southern quarter of the state and for many areas of eastern and western Iowa. Many of the soil types encountered for highway projects are unsuitable soils under the current Iowa DOT specifications. The bulk of the remaining soils are Class 10 soils. Select soils for use directly under the pavement are often difficult to find on a project, and in many instances are economically unavailable. This was the case for a 4.43-mile grading (STP-S- 90(22)-SE-90) and paving project in Wapello County. The project begins at the Alliant Utilities generating station in Chillicothe, Iowa, and runs west to the Monroe-Wapello county line. This road carries a significant amount of truck traffic hauling coal from the generating station to the Cargill corn processing plant in Eddyville, Iowa. The proposed 10-inch Portland Cement Concrete (PCC) pavement was for construction directly on a Class 10 soil subgrade, which is not a desirable condition if other alternatives are available. Wapello County Engineer Wendell Folkerts supported the use of reclaimed fly ash for a portion of the project. Construction of about three miles of the project was accomplished using 10 inches of reclaimed fly ash as a select fill beneath the PCC slab. The remaining mile was constructed according to the original design to be used as a control section for performance monitoring. The project was graded during the summers of 1998 and 1999. Paving was completed in the fall of 1999. This report presents the results of design considerations and laboratory and field testing results during construction. Recommendations for use of reclaimed fly ash as a select fill are also presented.
Resumo:
Fly ash was used in this evaluation study to replace 15% of the cement in Class C-3 concrete paving mixes. One Class "c" ash from Iowa approved sources was examined in each mix. Substitution rate was based on 1 to 1 basis, for each pound of cement removed 1.0 pound of ash was added. The freeze/thaw durability of the concrete studied was not adversely affected by the presence of fly ash. This study reveals that the durability of the concrete test specimens made with Class II durability aggregates was slightly increased in all cases by the substitution of cement with 15% Class "c" fly ash. In all cases durability factors either remained the same or slightly improved except for one case where the durability factor decreased from 36 to 34. The expansion decreased in all cases.
Resumo:
The major objective of this research project was to investigate the chemistry and morphology of portland cement concrete pavements in Iowa. The integrity of the various pavements was evaluated qualitatively, based on the presence or absence of microcracks, the presence or absence of sulfate minerals, and the presence or absence of alkali-silica gel(s). Major equipment delays and subsequent equipment replacements resulted in significant delays over the course of this research project. However, all these details were resolved and the equipment is currently in place and fully operational. The equipment that was purchased for this project included: (I) a LECO VP 50, 12-inch diameter, variable speed grinder/polisher: (2) a Hitachi S-2460N variable pressure scanning electron microscope; and (3) a OXFORD Instruments Link ISIS microanalysis system with a GEM (high-purity germanium) X-ray detector. This study has indicated that many of the concrete pavements contained evidence of multiple deterioration mechanisms: and hence, the identification of a single reason for the distress that was observed in any given pavement typically had to be based on opinion rather than empirical evidence.
Resumo:
The Greene County, Iowa overlay project, completed in October 1973, was inspected on October 16 & 17, 1978 After five years of service The 33 fibrous concrete sections, four CRCP sections, two mesh reinforced and two plain concrete sections with doweled reinforcement were rated relative to each other on a scale of 0 t o 100. The rating was conducted by the original members of the Project Planning Committee, Iowa DOT, Iowa Counties, Federal Highway Administration, University of Illinois and industry representatives . In all , there were 23 representatives who rated this project . The 23 values were then averaged to provide a final rating number for each section. The highest panel rating (90) was assigned to the 5-inch thick , deformed barre in forced PCC sections ; an 86t o a 3-inch thick , 160 lbs. of fiber and 600 lbs . of cement on a partial bonded surface ; an 84 to the 4-inch CRC with elastic joints (bonded) and an 84 to a 4-inch mesh reinforce section. One of the major factors influencing performance appears t o be the thickness. In the fibrous concrete overlay, The greatest influences appears t o be the fiber content. Overlay Sections containing 160 1b/yd3 of Fiber are, in almost all cases , outperforming those c o n t a i n i n g 60 or 100. It is obvious at This time meth at the 3-inch thick fibrous concrete overlays are, in general, out performing the 2-inch thick sections. The performance of the fibrous concrete the overlay appears to be favorably influenced by: (1) The use of higher a spectra fiber (0.025 x 2.5 i n c h e s ) v e r s u s (0.010 x 0.022 x 1.0 inches) (2) The use of a lower cement c o n t e n t ( 600 versus 750 1b/yd3) However, The set less well defined and the improvements in overlay performance attributed to high aspect ratio fibers and low cement contents.
Resumo:
The objectives of this research project are: (1) To determine the feasibility of proportioning, mixing, placing and finishing a dense portland cement concrete in a bridge floor using conventional mixing, placing and finishing equipment. (2) To determine the economics, longevity, maintenance performance and protective qualities of a dense portland cement concrete bridge floor when using a high rangewater reducing admixture. The purpose of a high range water reducing admixture is to produce a dense, high quality concrete at a low water-cement ratio witj adequate workability. A low water-cement ratio contributes greatly to increased strength. The normal 7 day strength of untreated concrete would be expected i n 3 days using a superplasticizer. A dense concrete also has the desirable properties of excellent durability and reduced permeability. It is felt that a higher quality, denser, higher strength portland cement concrete can be produced and placed, using conventional equipment, by the addition of a high range water reducing admixture. Such a dense concrete, w i t h a water/cement ratio of approximately 0.30 to 0.35, would be expected to be much less permeable and thus retard the intrusion of chloride. With care and attention given to obtaining the design cover over steel (2% inches clear), it i s hoped that protection for the design life of the structure will be obtained. Evaluation of this experimental concrete bridge floor included chloride content and delamination testing of the concrete floor five years after construction. A comparitive evaluation o f a control section o f concrete without the water reducing admixture was conducted. Other items o f comparison include workability during construction, strength, density, water-cement ratio and chloride penetration.
Resumo:
Research was conducted in 1980 using Additive 5990 to prevent reflective cracking in asphalt cement concrete when placed over portland cement concrete. Test sections were placed with 08, 3%, 6 8 , and 9% Additive 5990 by weight of asphalt cement at mix temperatures between 375OF and 415°F with AC-5 and AC-10 grade asphalt cement. Also, sections using AC-5 and AC-10 were constructed with the normal mix temperature (not to exceed 330°F). One section was placed using AC-20 mixed at the normal mix temperature. It was concluded that the Additive 5990 did not prevent reflective cracking on this project.
Resumo:
The quality and availability of aggregate for pc concrete stone varies across Iowa. Southwest Iowa is one area of the state that is short of quality aggregates. The concrete stone generally available in the area is limestone from the Argentine or Winterset ledges with an overburden of up to 150 feet. This concrete stone is classified as Class 1 durability and is susceptible to 'ID"-cracking. In addition, the general engineering soil classification rates the soils of southwest Iowa as having the poorest subgrade bearing characteristics in the state. 1 The combination of poor soils and low quality aggregate has contributed to premature deterioration of many miles of portland cement concrete pavement. Research project HR-209 was initiated in 1979 to explore alternative construction methods that may produce better pavements for southwest Iowa.
Resumo:
Previous Iowa DOT sponsored research has shown that some Class C fly ashes are ementitious (because calcium is combined as calcium aluminates) while other Class C ashes containing similar amounts of elemental calcium are not (1). Fly ashes from modern power plants in Iowa contain significant amounts of calcium in their glassy phases, regardless of their cementitious properties. The present research was based on these findings and on the hyphothesis that: attack of the amorphous phase of high calcium fly ash could be initiated with trace additives, thus making calcium available for formation of useful calcium-silicate cements. Phase I research was devoted to finding potential additives through a screening process; the likely chemicals were tested with fly ashes representative of the cementitious and non-cementitious ashes available in the state. Ammonium phosphate, a fertilizer, was found to produce 3,600 psi cement with cementitious Neal #4 fly ash; this strength is roughly equivalent to that of portland cement, but at about one-third the cost. Neal #2 fly ash, a slightly cementitious Class C, was found to respond best with ammonium nitrate; through the additive, a near-zero strength material was transformed into a 1,200 psi cement. The second research phase was directed to optimimizing trace additive concentrations, defining the behavior of the resulting cements, evaluating more comprehensively the fly ashes available in Iowa, and explaining the cement formation mechanisms of the most promising trace additives. X-ray diffraction data demonstrate that both amorphous and crystalline hydrates of chemically enhanced fly ash differ from those of unaltered fly ash hydrates. Calciumaluminum- silicate hydrates were formed, rather than the expected (and hypothesized) calcium-silicate hydrates. These new reaction products explain the observed strength enhancement. The final phase concentrated on laboratory application of the chemically-enhanced fly ash cements to road base stabilization. Emphasis was placed on use of marginal aggregates, such as limestone crusher fines and unprocessed blow sand. The nature of the chemically modified fly ash cements led to an evaluation of fine grained soil stabilization where a wide range of materials, defined by plasticity index, could be stabilized. Parameters used for evaluation included strength, compaction requirements, set time, and frost resistance.
Resumo:
The major objective of this research project was to investigate the chemistry and morphology of portland cement concrete pavements in Iowa. The integrity of the various pavements was evaluated qualitatively, based on the presence or absence of microcracks, the presence or absence of sulfate minerals, and the presence or absence of alkali-silica gel(s). Major equipment delays and subsequent equipment replacements resulted in significant delays over the course of this research project. However, all these details were resolved and the equipment is currently in place and fully operational. The equipment that was purchased for this project included: ( I ) a LECO VP 50, 12-inch diameter, variable speed grinder/polisher: (2) a Hitachi S-2460N variable pressure scanning electron microscope; and (3) a OXFORD Instruments Link ISIS microanalysis system with a GEM (high-purity germanium) X-ray detector. This study has indicated that many of the concrete pavements contained evidence of multiple deterioration mechanisms: and hence, the identification of a single reason for the distress that was observed in any given pavement typically had to be based on opinion rather than empirical evidence.