947 resultados para cell cycle protein


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The putative translation factor eIF5A is essential for cell viability and is highly conserved from archaebacteria to mammals. This factor is the only cellular protein that undergoes an essential posttranslational modification dependent on the polyamine spermidine, called hypusination. This review focuses on the functional characterization of eIF5A. Although this protein was originally identified as a translation initiation factor, subsequent studies did not support a role for eIF5A in general translation initiation. eIF5A has also been implicated in nuclear export of HIV-1 Rev and mRNA decay, but these findings are controversial in the literature and may reflect secondary effects of eIF-5A function. Next, the involvement of eIF5A and hypusination in the control of the cell cycle and proliferation in various organisms is reviewed. Finally, recent evidence in favor of reconsidering the role of eIF5A as a translation factor is discussed. Future studies may reveal the specific mechanism by which eIF5A affects protein synthesis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Lip squamous cell carcinoma (SCC) may develop from a premalignant condition, actinic cheilitis (AC) in 95% of the cases. Both premalignant and neoplastic lip diseases are caused mainly by chronic exposure to the ultraviolet component of solar radiation, especially UVB. This exposure causes disruption of the cell cycle and damage to DNA repair systems, like mismatch repair, altering proteins repair as hMLH1 and hMSH2. This research aimed to investigate the immunohistochemical expression of hMLH1 and hMSH2 proteins in lower lip SCCs and ACs, providing additional information about carcinogenesis of the lower lip. The sample consisted 40 cases of ACs and 40 cases of lower lip SCCs. Histological sections of 3 μm were submitted to immunoperoxidase method, for immunohistochemical analysis of lesions were counted in 1000 cells (positive and negative), data were evaluated both in absolute numbers and percentage of immunostained cells, the latter by assigning scores. Associations of the variables and comparative analysis of biomarker expression were performed by Fisher s exact and Pearson s chi-square, "t" student, one-way ANOVA, Mann- Whitney e Kruskal-Wallis tests. The level of significance was 5%. It was found that, in lower lip SCC, the mean of the proteins was higher in female patients (hMLH1= 369,80 + 223,98; hMHS2 = 534,80 + 343,62), less than 50 years old (hMLH1 = 285,50 + 190,65; hMHS2 = 540,00 + 274,79) and classified as low-grade malignancy (hMLH1 = 264,59 + 179,21; hMHS2 = 519,32 + 302,58), in these data only to sex, for hMLH1 protein, was statistically significant (p=0.034). Comparing the different lesions, we observed that for both hMLH1 and hMSH2 protein, the average of positive epithelial cells decreased as the lesion was graded at later stages. The ACs classified without dysplasia or mild dysplasia had the highest average of immunostained cells (hMLH1 = 721.23 + 88.116; hMHS2 = 781.50 + 156.93). The ACs classified as moderate or severe dysplasia had intermediate values (hMLH1 = 532,86 + 197,72; hMHS2 = 611,14 + 172,48) and SSCs of the lower lip had the lowest averages (hMLH1 = 255,03 + 199,47; hMHS2 = 518,38 + 265,68). There was a statistically significant difference between groups (p<0.001). In conclusion, our data support the hypothesis that changes in immunoexpression of these proteins is related to the process of carcinogenesis of the lower lip

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Oral squamous cell carcinoma (OSCC) is the most common malignancy in oral cavity and human papillomavirus (HPV) may have an important role in its development. The aim of this experiment was to investigate the HPV DNA and viral types in 90 cases of OSCC. Moreover, a comparative analysis between the cases of OSSC with and without HPV DNA was performed by using cell cycle markers p21 and pRb in order to detect a possible correlation of these proteins and HPV infection. DNA was extracted from paraffin embedded tissue and amplified by PCR (polymerase chain reaction) with primers PCO3+ e PCO4+ for a fragment of human β-globin gene. After this procedure, PCR for HPV DNA detection was realized using a pair of generic primers GP5+ e GP6+. Immunohistochemical study was performed by streptoavidin-biotin technique and antibodies against p21 and pRb proteins were employed. Eighty-eight cases were positive for human β-globin gene and HPV DNA was found in 26 (29.5%) of then. It could not be detected significant correlation between HPV and age, sex and anatomical sites of the lesion. The most prevalent viral type was HPV 18 (80.8%). Regarding the immunohistochemical analysis, it was detected significant association between HPV presence and pRb immunoexpression (p=0,044), nevertheless, the same was not observed in relation to p21 protein (p =0,416). It can be concluded that the low detection of HPV DNA in OSCC by the present experiment suggests a possible role of the virus in the development and progression in just a subset of this disease

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Oral squamous cell carcinoma (OSCC) is the most prevalent malignancy in the oral cavity and reach a large number of individuals, has become an important public health problem. Studies have demonstrated changes in pathway components BMP in various types of cancers as prostate, colon, breast, gastric and OSCCs. Is the current knowledge that these proteins may exert pro-tumor effect in more advanced stages of neoplastic development coming to favor progression and invasion tumor. The inhibition of the signaling pathway BMP-2 through its antagonists, have shown positive results of antitumor activity and use of Noggin may be a novel therapeutic target for cancer. Given this evidence and the few studies with BMP-2, Noggin and OSCC, the objective of this research was to evaluate the effect of BMP-2 and its antagonist Noggin on proliferation and migration cell in line of cell cultures of human tongue squamous cell carcinoma (SCC25). The study was divided in three groups, a control group, where SCC25 cells suffered no treatment, a BMP-2 group, in which cells were treated with 100ng/ml of BMP-2 and a group of cells that were treated with 100ng/ml of Noggin. For the proliferation assay and cell cycle were established three time intervals (24, 48 and 72 hours). Proliferative activity was investigated by trypan blue and cell cycle analysis by staining with propidium iodide flow cytometry. The potential for migration / invasion of SCC25 cells was performing by a cell invasion assay using Matrigel in a 48-hour interval. The proliferation curve showed a higher proliferation in cells treated with BMP-2 in 72 hours (p < 0.05), and lower overgrowth and cell viability in Noggin group. Recombinant proteins favored a greater percentage of cells in cell cycle phase Go/G1 with a statistically significant difference in the interval of 24 hours (p < 0.05). BMP- 2 produced a greater invasion of cells studied as well as its antagonist Noggin inhibits invasion of cells (p < 0.05). Thus, these results indicate that BMP-2 promotes malignant phenotype, dues stimulates proliferation and invasion of SCC25 cells and, its antagonist Noggin may be an alternative treatment, due to inhibit the tumor progression

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Plant responses against pathogens cause up-and downward shifts in gene expression. To identify differentially expressed genes in a plant-virus interaction, susceptible tomato plants were inoculated with the potyvirus Pepper yellow mosaic virus (PepYMV) and a subtractive library was constructed from inoculated leaves at 72 h after inoculation. Several genes were identified as upregulated, including genes involved in plant defense responses (e. g., pathogenesis-related protein 5), regulation of the cell cycle (e. g., cytokinin-repressed proteins), signal transduction (e. g., CAX-interacting protein 4, SNF1 kinase), transcriptional regulators (e. g., WRKY and SCARECROW transcription factors), stress response proteins (e. g., Hsp90, DNA-J, 20S proteasome alpha subunit B, translationally controlled tumor protein), ubiquitins (e. g., polyubiquitin, ubiquitin activating enzyme 2), among others. Downregulated genes were also identified, which likewise display identity with genes involved in several metabolic pathways. Differential expression of selected genes was validated by macroarray analysis and quantitative real-time polymerase chain reaction. The possible roles played by some of these genes in the viral infection cycle are discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study describes the changes undergone by cells of the salivary glands of unfed and feeding (at day two and four post-attachment) Rhipicephalus sanguineus males, as well as new cell types. In unfed males, types I and II acini are observed with cells undifferentiated, undefined 1 and 2 (the latter, with atypical granules), a, c1 and c3; type III is composed of cells d and e; and type IV present cells g. In males at day two post-attachment, type I acini exhibit the same morphology of unfed individuals. An increase in size is observed in types II, III, and IV, as cells are filled with secretion granules. Some granules are still undergoing maturation. In type II acinus, cells a, b and c1-c8 are observed. Cells c7 and c8 are described for the first time. Cells c7 are termed as such due to the addition of polysaccharides in the composition of the secretion granules (in unfed individuals, they are termed undefined 1). Type III acini exhibit cells d and e completely filled with granules, and in type IV, cells g contain granules in several stages of maturation. In males at day four post-attachment, type I acini do not exhibit changes. Granular acini exhibit cells with fewer secretion granules, which are already mature. In type II acini, cells a, b, c1-c5 are present, type III exhibit cells d and e, and type IV contain cells g with little or no secretion. This study shows that in the salivary glands of R. sanguineus males, cells a, c1, and c3 of type II acinus, and cells d and e of type III do not exhibit changes in granular content, remaining continuously active during the entire feeding period. This indicates that during the intervals among feeding stages, gland cells reacquire the same characteristics found in unfed individuals, suggesting that they undergo reprogramming to be active in the next cycle.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Intestinal cancers are correlated with diet. Thus, determining and understanding nutrient-genome interactions is important. The present work assessed the action of the oligoelement selenium on cell proliferation, cytotoxicity, and in situ apoptosis induction and on the expression CASP9, BCL-XL and APC genes in intestinal adenocarcinoma cells (HT29). HT29 cells were cultured and treated with selenium at concentrations of 5, 50 and 500 ng/mL with or without the damage-inducing agent doxorubicin. These cells were then evaluated for cytotoxicity (MTT), cell proliferation and in situ apoptosis induction. To evaluate gene expression, only the cells treated with 500 ng/mL of selenium were used. RNA was extracted from these cells, and the expressions of CASP9, BCL-XL and APC were analyzed by the RT-PCR method. The GAPDH gene was used as a reference gene. The MTT assay showed that selenium was not cytotoxic at any of the concentrations tested. The cell proliferation assay showed that selenium did not interfere with cell proliferation at the three concentrations tested. In contrast, when the three concentrations were combined with doxorubicin, a significant decrease in the proliferation rate was observed. The apoptosis rate was significantly increased in the selenium (500 ng/mL) and doxorubicin group. CASP9 expression was increased and BCL-XL expression decreased in the selenium (500 ng/mL) and doxorubicin group. APC was significantly increased in the selenium group alone. These results show that selenium increases apoptosis, especially when it is associated with a damage-inducing agent. Also, selenium has an important role in the expression of the APC gene, which is related to cell cycle regulation. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Abnormalities in any component of the cell cycle regulatory machine may result in oral. cancer, and markers of cell proliferation have been used to determine the prognosis of tumor progression. The aim of this study was to determine whether silver-stained nucleolar organizer region (AgNOR) and Ki-67 measurements could improve the assessment of growth rates in oral lesions. Eighty-three oral biopsies were studied, 20 of which were classified as fibrous inflammatory hyperplasia (FIH), 40 as leukoplakia (LKP) and 23 as oral. squamous cell carcinoma (OSCC). Within the LKP group, 22 out of 29 biopsies were diagnosed as non-dysplastic leukoplakia (LK) and 18 as dysplastic teukoptakia (DLK), presenting discrete, moderate and severe dysplasia. Ki-67 immunotabeting of the lesions increased steadily in the following order: FIH, DLK, LK and OSCC, indicating that Ki-67 is a good marker for predicting the protiferative fraction among benign, premalignant and malignant oral lesions. The median values of AgNOR parameters indicate that the morphometric index gives better results regarding the proliferative rate than the numerical one. A series of linear regressions between AgNOR parameters and Ki-67 showed positive associations. We conclude that a combination of Ki-67 and morphometric AgNOR analyses could be used as an aid in the determination of the protiferative status of oral epithelial. cells in oral cancer. (C) 2007 Elsevier GmbH. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The CDKN1A (TP21)(2) gene encodes a 21-kD protein that is a critical downstream mediator of wild-type TP53 and an important regulator of the cell cycle. Failure in the function of this gene would be expected to result in abnormal cell proliferation and transformation. Tumor-associated mutations of the coding region of the TP21 are rare. on the other hand, some TP21 polymorphisms have been identified and characterized by single base substitutions. In the present study, we investigated the potential role of TP21 gene polymorphisms in skin, head, and neck tumorigenesis. A total of 261 samples were examined by polymerase chain reaction single-strand conformational analysis, and one mutation at codon 31 and four polymorphisms in exons 2 (codon 55) and 3 [nucleotide (nt)590] and in promoter region (nt2298) were identified. In conclusion, this investigation confirmed the rarity of mutations in this gene, arguing against a role for TP21 mutations in skin, head, and neck cancers. Also, our results show significant differences in nt2298 allele frequencies between normal individuals and skin malignant tumors (P < 0.05). The results suggest that this polymorphism affects TP21 transactivator binding and may be important during the pathogenesis of skin cancer. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

1. Cell proliferation is of interest since abnormal cell proliferation appears to be a precursor of tumorigenesis and also because the quantitative description of cell proliferation in tumors can be used to predict the biological behavior of a particular neoplasia.2. Them am several reliable methods of studying cell proliferation in tissues. One of the most important is the detection of the Ki67 defined antigen in frozen sections. The number of cells expressing Ki67 correlates with histological grades of tumors and can also be predictive of clinical outcome. The Ki67 can be localized in tissue sections using monoclonal antibodies in association with the immunoperoxidase technique.3. Proliferating cell nuclear antigen (PCNA) is a component of DNA polymerase-delta and is another important cell proliferation marker manifesting a striking increase in concentration during the S phase of the cell cycle. 19A2 and PC10 are two different monoclonal antibodies which can be employed to detect PCNA in paraffin-embedded tissues.4. Molecular biology has also been making a great contribution to the study of cell proliferation. The most recent innovation in tissue identification of proliferating cells is the use of in situ hybridization for the localization of histone H3 and/or H4 mRNA. H3 mRNA-positive cells appear to be present in basal cells of the skin and in crypt cells of the intestine which are sites with high proliferation rate.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The development of strategies for the protection of oral tissues against the adverse effects of resin monomers is primarily based on the elucidation of underlying molecular mechanisms. The generation of reactive oxygen species beyond the capacity of a balanced redox regulation in cells is probably a cause of cell damage. This study was designed to investigate oxidative DNA damage, the activation of ATM, a reporter of DNA damage, and redox-sensitive signal transduction through mitogen-activated protein kinases (MAPKs) by the monomer triethylene glycol dimethacrylate (TEGDMA). TEGDMA concentrations as high as 3-5 mm decreased THP-1 cell viability after a 24 h and 48 h exposure, and levels of 8-oxoguanine (8-oxoG) increased about 3- to 5-fold. The cells were partially protected from toxicity in the presence of N-acetylcysteine (NAC). TEGDMA also induced a delay in the cell cycle. The number of THP-1 cells increased about 2-fold in G1 phase and 5-fold in G2 phase in cultures treated with 3-5 mm TEGDMA. ATM was activated in THP-1 cells by TEGDMA. Likewise, the amounts of phospho-p38 were increased about 3-fold by 3 mm TEGDMA compared to untreated controls after a 24 h and 48 h exposure period, and phospho-ERK1/2 was induced in a very similar way. The activation of both MAPKs was inhibited by NAC. Our findings suggest that the activation of various signal transduction pathways is related to oxidative stress caused by a resin monomer. Signaling through ATM indicates oxidative DNA damage and the activation of MAPK pathways indicates oxidative stress-induced regulation of cell survival and apoptosis. (C) 2008 Elsevier Ltd. All rights reserved.