937 resultados para casein kinase II beta
Resumo:
Lateral gene transfer (LGT) from prokaryotes to microbial eukaryotes is usually detected by chance through genome-sequencing projects. Here, we explore a different, hypothesis-driven approach. We show that the fitness advantage associated with the transferred gene, typically invoked only in retrospect, can be used to design a functional screen capable of identifying postulated LGT cases. We hypothesized that beta-glucuronidase (gus) genes may be prone to LGT from bacteria to fungi (thought to lack gus) because this would enable fungi to utilize glucuronides in vertebrate urine as a carbon source. Using an enrichment procedure based on a glucose-releasing glucuronide analog (cellobiouronic acid), we isolated two gus(+) ascomycete fungi from soils (Penicillium canescens and Scopulariopsis sp.). A phylogenetic analysis suggested that their gus genes, as well as the gus genes identified in genomic sequences of the ascomycetes Aspergillus nidulans and Gibberella zeae, had been introgressed laterally from high-GC gram(+) bacteria. Two such bacteria (Arthrobacter spp.), isolated together with the gus(+) fungi, appeared to be the descendants of a bacterial donor organism from which gus had been transferred to fungi. This scenario was independently supported by similar substrate affinities of the encoded beta-glucuronidases, the absence of introns from fungal gus genes, and the similarity between the signal peptide-encoding 5' extensions of some fungal gus genes and the Arthrobacter sequences upstream of gus. Differences in the sequences of the fungal 5' extensions suggested at least two separate introgression events after the divergence of the two main Euascomycete classes. We suggest that deposition of glucuronides on soils as a result of the colonization of land by vertebrates may have favored LGT of gus from bacteria to fungi in soils.
Resumo:
Several lines of evidence implicate the p38 mitogen-activated protein kinase (p38 MAPK) in the proinflammatory response to bacterial agents and cytokines. Equally, the transcription factor, nuclear factor (NF)-kappaB, is recognized to be a critical determinant of the inflammatory response in intestinal epithelial cells (IECs). However, the precise inter-relationship between the activation of p38 MAPK and activation of the transcription factor NF-kappaB in the intestinal epithelial cell (IEC) system, remains unknown. Here we show that interleukin (IL)-1beta activates all three MAPKs in Caco-2 cells. The production of IL-8 and monocyte chemotactic protein 1 (MCP-1) was attenuated by 50% when these cells were preincubated with the p38 MAPK inhibitor, SB 203580. Further investigation of the NF-kappaB signalling system revealed that the inhibitory effect was independent of the phosphorylation and degradation of IkappaBalpha, the binding partner of NF-kappaB. This effect was also independent of the DNA binding of the p65 Rel A subunit, as well as transactivation, determined by an NF-kappaB luciferase construct, using both SB 203580 and dominant-negative p38 MAPK. Evaluation of IL-8 and MCP-1 RNA messages by reverse transcription-polymerase chain reaction (RT-PCR) revealed that the inhibitory effect of SB 203580 was associated with a reduction in this parameter. Using an IL-8-luciferase promoter construct, an effect of p38 upon its activation by both pharmacological and dominant-negative p38 construct co-transfection was demonstrated. It is concluded that p38 MAPK influences the expression of chemokines in intestinal epithelial cells, through an effect upon the activation of the chemokine promoter, and does not directly involve the activation of the transcription factor NF-kappaB
Resumo:
Since land use change can have significant impacts on regional biogeochemistry, we investigated how conversion of forest and cultivation to pasture impact soil C and N cycling. In addition to examining total soil C, we isolated soil physiochemical C fractions in order to understand the mechanisms by which soil C is sequestered or lost. Total soil C did not change significantly over time following conversion from forest, though coarse (250-2,000 mum) particulate organic matter C increased by a factor of 6 immediately after conversion. Aggregate mean weight diameter was reduced by about 50% after conversion, but values were like those under forest after 8 years under pasture. Samples collected from a long-term pasture that was converted from annual cultivation more than 50 years ago revealed that some soil physical properties negatively impacted by cultivation were very slow to recover. Finally, our results indicate that soil macroaggregates turn over more rapidly under pasture than under forest and are less efficient at stabilizing soil C, whereas microaggregates from pasture soils stabilize a larger concentration of C than forest microaggregates. Since conversion from forest to pasture has a minimal impact on total soil C content in the Piedmont region of Virginia, United States, a simple C stock accounting system could use the same base soil C stock value for either type of land use. However, since the effects of forest to pasture conversion are a function of grassland management following conversion, assessments of C sequestration rates require activity data on the extent of various grassland management practices.
Resumo:
Background: The first sign of developing multiple sclerosis is a clinically isolated syndrome that resembles a multiple sclerosis relapse. Objective/methods: The objective was to review the clinical trials of two medicines in clinically isolated syndromes (interferon β and glatiramer acetate) to determine whether they prevent progression to definite multiple sclerosis. Results: In the BENEFIT trial, after 2 years, 45% of subjects in the placebo group developed clinically definite multiple sclerosis, and the rate was lower in the interferon β-1b group. Then all subjects were offered interferon β-1b, and the original interferon β-1b group became the early treatment group, and the placebo group became the delayed treatment group. After 5 years, the number of subjects with clinical definite multiple sclerosis remained lower in the early treatment than late treatment group. In the PreCISe trial, after 2 years, the time for 25% of the subjects to convert to definite multiple sclerosis was prolonged in the glatiramer group. Conclusions: Interferon β-1b and glatiramer acetate slow the progression of clinically isolated syndromes to definite multiple sclerosis. However, it is not known whether this early treatment slows the progression to the physical disabilities experienced in multiple sclerosis.
Resumo:
Background: Methotrexate alone or in combination with other agents is the standard treatment for moderate-to-severe rheumatoid arthritis. As the biological agents are expensive, they are not usually used until methotrexate has failed to give a good response. Thus, there is scope for the development of cheaper drugs that can be used instead of methotrexate or in addition to methotrexate. Objectives/methods: Pamapimod is a p38α inhibitor being developed for use in the treatment of rheumatoid arthritis. The objective was to evaluate the recent clinical trials of pamapimod in subjects with rheumatoid arthritis. Results: There is no clear cut evidence that pamapimod alone or in the presence of methotrexate is efficacious in subjects with rheumatoid arthritis, but it does cause adverse effects. Conclusion: It is unlikely that pamapimod will be useful in the treatment of rheumatoid arthritis.
Resumo:
The structures of the anhydrous 1:1 proton-transfer compounds of isonipecotamide (4-carbamoylpiperidine) with picric acid and 3,5-dinitrosalicylic acid, namely 4-carbamoylpiperidinium 2,4,6-trinitrophenolate, C6H13N2O8+ C6H2N3O7- (I) and 4-carbamoylpiperidinium 2-carboxy-4,6-dinitrophenolate, C6H13N2O8+ C7H3N2O7-: two forms, the monoclinic alpha-polymorph (II) and the triclinic beta-polymorph (III) have been determined at 200 K. All compounds form hydrogen-bonded structures, one-dimensional in (II), two-dimensional in (I) and three-dimensional in (III). In (I), the cations form centrosymmetric cyclic head-to-tail hydrogen-bonded homodimers [graph set R2/2(14)] through lateral duplex piperidinium N---H...O(amide) interactions. These dimers are extended into a two-dimensional network structure through further interactions with anion phenolate-O and nitro-O acceptors, including a direct symmetric piperidinium N-H...O(phenol),O(nitro) cation--anion association [graph set R2/1(6)]. The monoclinic polymorph (II) has a similar R2/1(6) cation-anion hydrogen-bonding interaction to (I) but with an additional conjoint symmetrical R1/2(4) interaction as well as head-to-tail piperidinium N-H...O(amide) O hydrogen bonds and amide N-H...O(carboxyl) hydrogen bonds, give a network structure which include large R3/4(20) rings. The hydrogen bonding in the triclinic polymorph (III) is markedly different from that of monoclinic (II). The asymmetric unit contains two independent cation-anion pairs which associate through cyclic piperidinium N-H...O,O'(carboxyl) interactions [graph set R2/1(4)]. The cations also show the zig-zag head-to-tail piperidinium N-H...O(amide) hydrogen-bonded chain substructures found in (II) but in addition feature amide N-H...O(nitro) and O(phenolate) and amide N-H...O(nitro) associations. As well there is a centrosymmetric double-amide N-H...O(carboxyl) bridged bis(cation-anion) ring system [graph set R2/4(8)] in the three-dimensional framework. The structures reported here demonstrate the utility of the isonipecotamide cation as a synthon with previously unrecognized potential for structure assembly applications. Furthermore, the structures of the two polymorphic 3,5-dinitrosalicylic acid salts show an unusual dissimilarity in hydrogen-bonding characteristics, considering that both were obtained from identical solvent systems.
Resumo:
The repair of dermal tissue is a complex process of interconnected phenomena, where cellular, chemical and mechanical aspects all play a role, both in an autocrine and in a paracrine fashion. Recent experimental results have shown that transforming growth factor-beta (TGF-beta) and tissue mechanics play roles in regulating cell proliferation, differentiation and the production of extracellular materials. We have developed a 1D mathematical model that considers the interaction between the cellular, chemical and mechanical phenomena, allowing the combination of TGF-beta and tissue stress to inform the activation of fibroblasts to myofibroblasts. Additionally, our model incorporates the observed feature of residual stress by considering the changing zero-stress state in the formulation for effective strain. Using this model, we predict that the continued presence of TGF-beta in dermal wounds will produce contractures due to the persistence of myofibroblasts; in contrast, early elimination of TGF-beta significantly reduces the myofibroblast numbers resulting in an increase in wound size. Similar results were obtained by varying the rate at which fibroblasts differentiate to myofibroblasts and by changing the myofibroblast apoptotic rate. Taken together, the implication is that elevated levels of myofibroblasts is the key factor behind wounds healing with excessive contraction, suggesting that clinical strategies which aim to reduce the myofibroblast density may reduce the appearance of contractures.
Resumo:
In the structure of polymeric title compound, {[Co2(C7H2N2O7)2(H2O)6] . 2H2O}n from the reaction of 3,5-dinitrosalicylic acid with cobalt(II) acetate, both slightly distorted octahedral Co(II) centres have crystallographic inversion symmetry. The coordination sphere about one Co centre comprises four O donors from two bidentate chelate O(phenolate), O(carboxyl) and bridging dianionic ligands and two water molecules [Co-O range, 2.0249(11)-2.1386(14)A] while that about the second Co centre has four water molecules and two bridging carboxyl O donor atoms [Co-O range, 2.0690(14)-2.1364(11)A]. The coordinated water molecules as well as the water molecules of solvation give water-water and water-carboxyl hydrogen-bonding interactions in the three-dimensional framework structure.
Resumo:
The NIR spectra of reichenbachite, scholzite and parascholzite have been studied at 298 K. The spectra of the minerals are different, in line with composition and crystal structural variations. Cation substitution effects are significant in their electronic spectra and three distinctly different electronic transition bands are observed in the near-infrared spectra at high wavenumbers in the 12000-7600 cm-1 spectral region. Reichenbachite electronic spectrum is characterised by Cu(II) transition bands at 9755 and 7520 cm-1. A broad spectral feature observed for ferrous ion in the 12000-9000 cm-1 region both in scholzite and parascholzite. Some what similarities in the vibrational spectra of the three phosphate minerals are observed particularly in the OH stretching region. The observation of strong band at 5090 cm-1 indicates strong hydrogen bonding in the structure of the dimorphs, scholzite and parascholzite. The three phosphates exhibit overlapping bands in the 4800-4000 cm-1 region resulting from the combinations of vibrational modes of (PO4)3- units.