847 resultados para carbon sequestration, conservation tillage, economics, greenhouse gases


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Lena River Delta, situated in Northern Siberia (72.0 - 73.8° N, 122.0 - 129.5° E), is the largest Arctic delta and covers 29,000 km**2. Since natural deltas are characterised by complex geomorphological patterns and various types of ecosystems, high spatial resolution information on the distribution and extent of the delta environments is necessary for a spatial assessment and accurate quantification of biogeochemical processes as drivers for the emission of greenhouse gases from tundra soils. In this study, the first land cover classification for the entire Lena Delta based on Landsat 7 Enhanced Thematic Mapper (ETM+) images was conducted and used for the quantification of methane emissions from the delta ecosystems on the regional scale. The applied supervised minimum distance classification was very effective with the few ancillary data that were available for training site selection. Nine land cover classes of aquatic and terrestrial ecosystems in the wetland dominated (72%) Lena Delta could be defined by this classification approach. The mean daily methane emission of the entire Lena Delta was calculated with 10.35 mg CH4/m**2/d. Taking our multi-scale approach into account we find that the methane source strength of certain tundra wetland types is lower than calculated previously on coarser scales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first Air Chemistry Observatory at the German Antarctic station Georg von Neumayer (GvN) was operated for 10 years from 1982 to 1991. The focus of the established observational programme was on characterizing the physical properties and chemical composition of the aerosol, as well as on monitoring the changing trace gas composition of the background atmosphere, especially concerning greenhouse gases. The observatory was designed by the Institut für Umweltphysik, University of Heidelberg (UHEIIUP). The experiments were installed inside the bivouac lodge, mounted on a sledge and put upon a snow hill to prevent snow accumulation during blizzards. All experiments were under daily control and daily performance protocols were documented. A ventilated stainless steel inlet stack (total height about 3-4 m above the snow surface) with a 50% aerodynamic cut-off diameter around 7-10 µm at wind velocities between 4-10 m/s supplied all experiments with ambient air. Contamination free sampling was realized by several means: (i) The Air Chemistry Observatory was situated in a clean air area about 1500 m south of GvN. Due to the fact that northern wind directions are very rare, contamination from the base can be excluded for most of the time. (ii) The power supply (20 kW) is provided by a cable from the main station, thus no fuel-driven generator is operated in the very vicinity. (iii) Contamination-free sampling is controlled by the permanently recorded wind velocity, wind direction and by condensation particle concentration. Contamination was indicated if one of the following criteria were given: Wind direction within a 330°-30° sector, wind velocity <2.2 m/s or >17.5 m/s, or condensation particle concentrations >2500/cm**3 during summer, >800/cm**3 during spring/autumn and >400/cm**3 during winter. If one or a definable combination of these criteria were given, high volume aerosol sampling and part of the trace gas sampling were interrupted. Starting at 1982 through 1991-01-14 surface ozone was measured with an electrochemical concentration cell (ECC). Surface ozone mixing ratio are given in ppbv = parts per 10**9 by volume. The averaging time corresponds to the given time intervals in the data sheet. The accuracy of the values are better than ±1 ppbv and the detection limit is around 1.0 ppbv. Aerosols were sampled on two Whatman 541 cellulose filters in series and analyzed by ion chromatography at the UHEI-IUP. Generally, the sampling period was seven days but could be up to two weeks on occasion. The air flow was around 100 m**3/h and typically 10000-20000 m**3 of ambient air was forced through the filters for one sample. Concentration values are given in nanogram (ng) per 1 m**3 air at standard pressure and temperature (1013 mbar, 273.16 K). Uncertainties of the values were approximately ±10% to ±15% for the main components MSA, chloride, nitrate, sulfate and sodium, and between ±20% and ±30% for the minor species bromide, ammonium, potassium, magnesium and calcium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Terrestrial ecosystems, occupying more than 25% of the Earth's surface, can serve as

`biological valves' in regulating the anthropogenic emissions of atmospheric aerosol

particles and greenhouse gases (GHGs) as responses to their surrounding environments.

While the signicance of quantifying the exchange rates of GHGs and atmospheric

aerosol particles between the terrestrial biosphere and the atmosphere is

hardly questioned in many scientic elds, the progress in improving model predictability,

data interpretation or the combination of the two remains impeded by

the lack of precise framework elucidating their dynamic transport processes over a

wide range of spatiotemporal scales. The diculty in developing prognostic modeling

tools to quantify the source or sink strength of these atmospheric substances

can be further magnied by the fact that the climate system is also sensitive to the

feedback from terrestrial ecosystems forming the so-called `feedback cycle'. Hence,

the emergent need is to reduce uncertainties when assessing this complex and dynamic

feedback cycle that is necessary to support the decisions of mitigation and

adaptation policies associated with human activities (e.g., anthropogenic emission

controls and land use managements) under current and future climate regimes.

With the goal to improve the predictions for the biosphere-atmosphere exchange

of biologically active gases and atmospheric aerosol particles, the main focus of this

dissertation is on revising and up-scaling the biotic and abiotic transport processes

from leaf to canopy scales. The validity of previous modeling studies in determining

iv

the exchange rate of gases and particles is evaluated with detailed descriptions of their

limitations. Mechanistic-based modeling approaches along with empirical studies

across dierent scales are employed to rene the mathematical descriptions of surface

conductance responsible for gas and particle exchanges as commonly adopted by all

operational models. Specically, how variation in horizontal leaf area density within

the vegetated medium, leaf size and leaf microroughness impact the aerodynamic attributes

and thereby the ultrane particle collection eciency at the leaf/branch scale

is explored using wind tunnel experiments with interpretations by a porous media

model and a scaling analysis. A multi-layered and size-resolved second-order closure

model combined with particle

uxes and concentration measurements within and

above a forest is used to explore the particle transport processes within the canopy

sub-layer and the partitioning of particle deposition onto canopy medium and forest

oor. For gases, a modeling framework accounting for the leaf-level boundary layer

eects on the stomatal pathway for gas exchange is proposed and combined with sap

ux measurements in a wind tunnel to assess how leaf-level transpiration varies with

increasing wind speed. How exogenous environmental conditions and endogenous

soil-root-stem-leaf hydraulic and eco-physiological properties impact the above- and

below-ground water dynamics in the soil-plant system and shape plant responses

to droughts is assessed by a porous media model that accommodates the transient

water

ow within the plant vascular system and is coupled with the aforementioned

leaf-level gas exchange model and soil-root interaction model. It should be noted

that tackling all aspects of potential issues causing uncertainties in forecasting the

feedback cycle between terrestrial ecosystem and the climate is unrealistic in a single

dissertation but further research questions and opportunities based on the foundation

derived from this dissertation are also brie

y discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Barite accumulation rates (BAR) have been measured from 12 DSDP/ODP site globally (DSDP site 525, 549 and ODP site 690, 738, 1051, 1209, 1215, 1220, 1221, 1263,1265 and 1266A) to reconstruct the export production across Paleocene Eocene Thermal Maximum (PETM) around 55.9 million year ago. Our results suggesting a general increase in export productivity. We propose that changes in marine ecosystems, resulting from high atmospheric partial pressure of CO2 and ocean acidification, led to enhanced carbon export from the photic zone to depth, thereby increasing the efficiency of the biological pump. We estimate that an annual carbon export flux out of the euphotic zone and into the deep ocean waters could have amounted to about 15 Gt during the PETM. About 0.4% of this carbon is expected to have entered the refractory dissolved organic pool, where it could be sequestered from the atmosphere for tens of thousands of years. Our estimates are consistent with the amount of carbon redistribution expected for the recovery from the PETM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large amounts of organic carbon are stored in Arctic permafrost environments, and microbial activity can potentially mineralize this carbon into methane, a potent greenhouse gas. In this study, we assessed the methane budget, the bacterial methane oxidation (MOX) and the underlying environmental controls of arctic lake systems, which represent substantial sources of methane. Five lake systems located on Samoylov Island (Lena Delta, Siberia) and the connected river sites were analyzed using radiotracers to estimate the MOX rates, and molecular biology methods to characterize the abundance and the community composition of methane-oxidizing bacteria (MOB). In contrast to the river, the lake systems had high variation in the methane concentrations, the abundance and composition of the MOB communities, and consequently, the MOX rates. The highest methane concentrations and the highest MOX rates were detected in the lake outlets and in a lake complex in a floodplain area. Though, in all aquatic systems we detected both, Type I and II MOB, in lake systems we observed a higher diversity including MOB, typical of the soil environments. The inoculation of soil MOB into the aquatic systems, resulting from permafrost thawing, might be an additional factor controlling the MOB community composition and potentially methanotrophic capacity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding changes in export production through time provides insight into the response of the biological pump to global climate change, particularly during periods of rapid climate change. In this study we consider what role changes in export production may have had on carbon sequestration and how this may have contributed to the onset of the Eocene-Oligocene transition (EOT). In addition, we consider if these export production variations are dominantly controlled by orbitally driven climate variability. To accomplish these objectives, we report changes in export production in the Eastern Equatorial Pacific (EEP) from Site U1333 across the EOT reconstructed from a high-resolution record of marine barite accumulation rates (BAR). BAR fluctuations suggest synchronous declines in export production associated with the two-step increases in oxygen isotopes that define the transition. The reduction in productivity across the EOT suggests that the biological pump did not contribute to carbon sequestration and the cooling over this transition. We also report a previously undocumented peak in EEP export productivity before the EOT onset. This peak is consistent with export production proxies from the Southern Ocean, potentially implying a global driver for this precursor event. We propose that this enhanced export production and the associated carbon sequestration in the late Eocene may have contributed to the pCO2 drawdown at the onset of Antarctic glaciation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oceanic anoxic events (OAEs) were episodes of widespread marine anoxia during which large amounts of organic carbon were buried on the ocean floor under oxygen-deficient bottom waters (Schlanger and Jenkyns, 1976; Schlanger et al., 1987). OAE2, occurring at the Cenomanian/Turonian boundary (about 93.5 Myr ago) (Gradstein et al., 2004), is the most widespread and best defined OAE of the mid-Cretaceous. Although the enhanced burial of organic matter can be explained either through increased primary productivity or enhanced preservation scenarios (Schlanger and Jenkyns, 1976; Schlanger et al., 1987). the actual trigger mechanism, corresponding closely to the onset of these episodes of increased carbon sequestration, has not been clearly identified. It has been postulated that large-scale magmatic activity initially triggered OAE2 (Sinton and Duncan, 1997; Kerr, 1998, doi:10.1144/gsjgs.155.4.0619), but a direct proxy of magmatism preserved in the sedimentary record coinciding closely with the onset of OAE2 has not yet been found. Here we report seawater osmium isotope ratios in organic-rich sediments from two distant sites. We find that at both study sites the marine osmium isotope record changes abruptly just at or before the onset of OAE2. Using a simple two-component mixing equation, we calculate that over 97 per cent of the total osmium content in contemporaneous seawater at both sites is magmatic in origin, a ~30-50-fold increase relative to pre-OAE conditions. Furthermore, the magmatic osmium isotope signal appears slightly before the OAE2 -as indicated by carbon isotope ratios- suggesting a time-lag of up to ~23 kyr between magmatism and the onset of significant organic carbon burial, which may reflect the reaction time of the global ocean system. Our marine osmium isotope data are indicative of a widespread magmatic pulse at the onset of OAE2, which may have triggered the subsequent deposition of large amounts of organic matter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article reviews the progress made in CO2 capture, storage, and utilization in Chinese Academy of Sciences (CAS). New concepts such as adsorption using dry regenerable solid sorbents as well as functional ionic liquids (ILs) for CO2 capture are thoroughly discussed. Carbon sequestration, such as geological sequestration, mineral carbonation and ocean storage are also covered. The utilization of CO2 as a raw material in the synthesis of chemicals and liquid energy carriers which offers a way to mitigate the increasing CO2 buildup is introduced.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Northern Bay of Bengal (NBoB) is a globally important region for deep-sea organic matter (OM) deposition due to massive fluvial discharge from the Ganges-Brahmaputra-Meghna (G-B-M) rivers and moderate to high surface productivity. Previous studies have focused on carbon burial in turbiditic sediments of the Bengal Fan. However, little is known about the storage of carbon in pelagic and hemipelagic sediments of the Bay of Bengal over millennial time scales. This study presents a comprehensive history of OM origin and fate as well as a quantification of carbon sediment storage in the Eastern Bengal Slope (EBS) during the last 18 ka. Bulk organic proxies (TOC, TIC, TN, d13CTOC, d15NTN) and content and composition of total hydrolysable amino acids (THAA) in a sediment core (SO188-342KL) from the EBS were analyzed. Three periods of high OM accumulation were identified: the Late Glacial (LG), the Bölling/Alleröd (B/A), and the Early Holocene Climatic Optimum (EHCO). Lower eustatic sea level before 15 ka BP allowed a closer connection between the EBS and the fluvial debouch, favoring high terrestrial OM input to the core site. This connection was progressively lost between 15 and 7 ka BP as sea level rose to its present height and terrestrial OM input decreased considerably. Export and preservation of marine OM was stimulated during periods of summer monsoon intensification (B/A and EHCO) as a consequence of higher surface productivity enhanced by cyclonic-eddy nutrient pumping and fluvial nutrient delivery into the photic zone. Changes in the THAA composition indicate that the marine plankton community structure shifted from calcareous-dominated before 13 ka BP to siliceous-dominated afterwards. They also indicate that the relative proportion of marine versus terrestrial OM deposited at site 342KL was primarily driven by relative sea level and enlarged during the Holocene. The ballasting effect of lithogenic particles during periods of high coastal proximity and/or enhanced fluvial discharge promoted the export and preservation of OM. The high organic carbon accumulation rates in the EBS during the LG (18-17 ka BP) were 5-fold higher than at present and comparable to those of glacial upwelling areas. Despite the differences in sediment and OM transport and storage among the Western and Eastern sectors of the NBoB, this region remains important for global carbon sequestration during sea level low-stands. In addition, the summer monsoon was a key promotor of terrestrial and marine OM export to the deep-ocean, highlighting its relevance as regulator of the global carbon budget.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report documents the development of the initial dynamic policy mixes that were developed for assessment in the DYNAMIX project. The policy mixes were designed within three different policy areas: overarching policy, land-use and food, and metals and other materials. The policy areas were selected to address absolute decoupling in general and, specifically, the DYNAMIX targets related to the use of virgin metals, the use of arable land and freshwater, the input of the nutrients nitrogen and phosphorus, and emissions of greenhouse gases. Each policy mix was developed within a separate author team, using a common methodological framework that utilize previous findings in the project. Specific drivers and barriers for resource use and resource efficiency are discussed in each policy area. Specific policy objectives and targets are also discussed before the actual policy mix is presented. Each policy mix includes a set of key instruments, which can be embedded in a wider set of supporting and complementary policy instruments. All key instruments are described in the report through responses to a set of predefined questions. The overarching mix includes a broad variety of key instruments. The land-use policy mix emphasizes five instruments to improve food production through, for example, revisions of already existing policy documents. It also includes three instruments to influence the food consumption and food waste. The policy mix on metals and other materials primarily aims at reducing the use of virgin metals through increased recycling, increased material efficiency and environmentally justified material substitution. To avoid simply shifting of burdens, it includes several instruments of an overarching character.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since the 1950s the global consumption of natural resources has skyrocketed, both in magnitude and in the range of resources used. Closely coupled with emissions of greenhouse gases, land consumption, pollution of environmental media, and degradation of ecosystems, as well as with economic development, increasing resource use is a key issue to be addressed in order to keep the planet Earth in a safe and just operating space. This requires thinking about absolute reductions in resource use and associated environmental impacts, and, when put in the context of current re-focusing on economic growth at the European level, absolute decoupling, i.e., maintaining economic development while absolutely reducing resource use and associated environmental impacts. Changing behavioural, institutional and organisational structures that lock-in unsustainable resource use is, thus, a formidable challenge as existing world views, social practices, infrastructures, as well as power structures, make initiating change difficult. Hence, policy mixes are needed that will target different drivers in a systematic way. When designing policy mixes for decoupling, the effect of individual instruments on other drivers and on other instruments in a mix should be considered and potential negative effects be mitigated. This requires smart and time-dynamic policy packaging. This Special Issue investigates the following research questions: What is decoupling and how does it relate to resource efficiency and environmental policy? How can we develop and realize policy mixes for decoupling economic development from resource use and associated environmental impacts? And how can we do this in a systemic way, so that all relevant dimensions and linkages—including across economic and social issues, such as production, consumption, transport, growth and wellbeing­—are taken into account? In addressing these questions, the overarching goals of this Special Issue are to: address the challenges related to more sustainable resource-use; contribute to the development of successful policy tools and practices for sustainable development and resource efficiency (particularly through the exploration of socio-economic, scientific, and integrated aspects of sustainable development); and inform policy debates and policy-making. The Special Issue draws on findings from the EU and other countries to offer lessons of international relevance for policy mixes for more sustainable resource-use, with findings of interest to policy makers in central and local government and NGOs, decision makers in business, academics, researchers, and scientists.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En République Démocratique du Congo (RDC), les savanes couvrent 76,8 millions d’hectares et constituent le second type d’écosystème après les forêts denses qui représentent 10% des forêts au niveau mondial. Ces formations herbeuses et arbustives offrent des potentialités importantes de séquestration du dioxyde de carbone pouvant contribuer par le fait même à la lutte contre le réchauffement climatique. C’est dans cette optique que se situe cette thèse intitulée « Évolution naturelle de savanes mises en défens à Ibi-village sur le plateau des Bateke en République Démocratique du Congo» dans le cadre du projet puits carbone d’IBI-Bateke. L’objectif général de notre recherche est d’étudier l’évolution naturelle en absence de feu de savanes situées dans des zones climatiques avec précipitations abondantes. Le plateau des Bateke nous a servi d’analyse de cas. Les inventaires floristiques et dendrométriques de la strate arbustive et arborescente de nos dispositifs hiérarchiques, ont permis de suivre ce processus naturel en tenant compte du gradient écologique dans les trois types de formations végétales (îlot forestier, la galerie forestière et la plantation d’Acacia auriculiformis). Nous avons mis en défens des savanes arbustives du plateau des Bateke pour étudier leur évolution naturelle vers une forêt, leur établissement, qualité, régénération forestière et en déterminer le taux de séquestration du carbone à l’aide des équations allométriques de Chave et al. (2005). Nous avons obtenu des valeurs moyennes de 107,477 t/ha de biomasse totale soit 51,05 Mg C/ha dans la galerie forestière, 103,772 t/ha de biomasse totale soit 49,29 Mg C/ha dans l’Îlot forestier, et 22,336 t/ha de biomasse totale soit 10,60 Mg C/ha dans la plantation. La mise en défens a stimulé l’installation des espèces forestières, et par le fait même accéléré la production de biomasse et donc la fixation de carbone. La comparaison de la richesse et la diversité spécifiques de l’Îlot et la galerie montre 22 familles botaniques inventoriées avec 55 espèces dans l’îlot forestier contre 27 familles dont 58 espèces dans la galerie. L’analyse canonique réalisée entre les variables de croissance et les variables environnementales révèle qu’il existe effectivement des relations fortes d’interdépendance entre les deux groupes de variables considérées. Cette méthodologie appropriée à la présente étude n’avait jamais été évoquée ni proposée par des études antérieures effectuées par d’autres chercheurs au plateau des Bateke. Mots Clés : Galerie forestière, Îlot forestier, mise en défens, plantation d’Acacia auriculiformis, reforestation, régénération naturelle, République Démocratique du Congo, savanes.