834 resultados para cameras
Resumo:
SD card (Secure Digital Memory Card) is widely used in portable storage medium. Currently, latest researches on SD card, are mainly SD card controller based on FPGA (Field Programmable Gate Array). Most of them are relying on API interface (Application Programming Interface), AHB bus (Advanced High performance Bus), etc. They are dedicated to the realization of ultra high speed communication between SD card and upper systems. Studies about SD card controller, really play a vital role in the field of high speed cameras and other sub-areas of expertise. This design of FPGA-based file systems and SD2.0 IP (Intellectual Property core) does not only exhibit a nice transmission rate, but also achieve the systematic management of files, while retaining a strong portability and practicality. The file system design and implementation on a SD card covers the main three IP innovation points. First, the combination and integration of file system and SD card controller, makes the overall system highly integrated and practical. The popular SD2.0 protocol is implemented for communication channels. Pure digital logic design based on VHDL (Very-High-Speed Integrated Circuit Hardware Description Language), integrates the SD card controller in hardware layer and the FAT32 file system for the entire system. Secondly, the document management system mechanism makes document processing more convenient and easy. Especially for small files in batch processing, it can ease the pressure of upper system to frequently access and process them, thereby enhancing the overall efficiency of systems. Finally, digital design ensures the superior performance. For transmission security, CRC (Cyclic Redundancy Check) algorithm is for data transmission protection. Design of each module is platform-independent of macro cells, and keeps a better portability. Custom integrated instructions and interfaces may facilitate easily to use. Finally, the actual test went through multi-platform method, Xilinx and Altera FPGA developing platforms. The timing simulation and debugging of each module was covered. Finally, Test results show that the designed FPGA-based file system IP on SD card can support SD card, TF card and Micro SD with 2.0 protocols, and the successful implementation of systematic management for stored files, and supports SD bus mode. Data read and write rates in Kingston class10 card is approximately 24.27MB/s and 16.94MB/s.
Resumo:
Finding rare events in multidimensional data is an important detection problem that has applications in many fields, such as risk estimation in insurance industry, finance, flood prediction, medical diagnosis, quality assurance, security, or safety in transportation. The occurrence of such anomalies is so infrequent that there is usually not enough training data to learn an accurate statistical model of the anomaly class. In some cases, such events may have never been observed, so the only information that is available is a set of normal samples and an assumed pairwise similarity function. Such metric may only be known up to a certain number of unspecified parameters, which would either need to be learned from training data, or fixed by a domain expert. Sometimes, the anomalous condition may be formulated algebraically, such as a measure exceeding a predefined threshold, but nuisance variables may complicate the estimation of such a measure. Change detection methods used in time series analysis are not easily extendable to the multidimensional case, where discontinuities are not localized to a single point. On the other hand, in higher dimensions, data exhibits more complex interdependencies, and there is redundancy that could be exploited to adaptively model the normal data. In the first part of this dissertation, we review the theoretical framework for anomaly detection in images and previous anomaly detection work done in the context of crack detection and detection of anomalous components in railway tracks. In the second part, we propose new anomaly detection algorithms. The fact that curvilinear discontinuities in images are sparse with respect to the frame of shearlets, allows us to pose this anomaly detection problem as basis pursuit optimization. Therefore, we pose the problem of detecting curvilinear anomalies in noisy textured images as a blind source separation problem under sparsity constraints, and propose an iterative shrinkage algorithm to solve it. Taking advantage of the parallel nature of this algorithm, we describe how this method can be accelerated using graphical processing units (GPU). Then, we propose a new method for finding defective components on railway tracks using cameras mounted on a train. We describe how to extract features and use a combination of classifiers to solve this problem. Then, we scale anomaly detection to bigger datasets with complex interdependencies. We show that the anomaly detection problem naturally fits in the multitask learning framework. The first task consists of learning a compact representation of the good samples, while the second task consists of learning the anomaly detector. Using deep convolutional neural networks, we show that it is possible to train a deep model with a limited number of anomalous examples. In sequential detection problems, the presence of time-variant nuisance parameters affect the detection performance. In the last part of this dissertation, we present a method for adaptively estimating the threshold of sequential detectors using Extreme Value Theory on a Bayesian framework. Finally, conclusions on the results obtained are provided, followed by a discussion of possible future work.
Resumo:
Studies of fluid-structure interactions associated with flexible structures such as flapping wings require the capture and quantification of large motions of bodies that may be opaque. Motion capture of a free flying insect is considered by using three synchronized high-speed cameras. A solid finite element representation is used as a reference body and successive snapshots in time of the displacement fields are reconstructed via an optimization procedure. An objective function is formulated, and various shape difference definitions are considered. The proposed methodology is first studied for a synthetic case of a flexible cantilever structure undergoing large deformations, and then applied to a Manduca Sexta (hawkmoth) in free flight. The three-dimensional motions of this flapping system are reconstructed from image date collected by using three cameras. The complete deformation geometry of this system is analyzed. Finally, a computational investigation is carried out to understand the flow physics and aerodynamic performance by prescribing the body and wing motions in a fluid-body code. This thesis work contains one of the first set of such motion visualization and deformation analyses carried out for a hawkmoth in free flight. The tools and procedures used in this work are widely applicable to the studies of other flying animals with flexible wings as well as synthetic systems with flexible body elements.
Resumo:
In this paper, we demonstrate a digital signal processing (DSP) algorithm for improving spatial resolution of images captured by CMOS cameras. The basic approach is to reconstruct a high resolution (HR) image from a shift-related low resolution (LR) image sequence. The aliasing relationship of Fourier transforms between discrete and continuous images in the frequency domain is used for mapping LR images to a HR image. The method of projection onto convex sets (POCS) is applied to trace the best estimate of pixel matching from the LR images to the reconstructed HR image. Computer simulations and preliminary experimental results have shown that the algorithm works effectively on the application of post-image-captured processing for CMOS cameras. It can also be applied to HR digital image reconstruction, where shift information of the LR image sequence is known.
Resumo:
Os oceanos representam um dos maiores recursos naturais, possuindo expressivo potencial energético, podendo suprir parte da demanda energética mundial. Nas últimas décadas, alguns dispositivos destinados à conversão da energia das ondas dos oceanos em energia elétrica têm sido estudados. No presente trabalho, o princípio de funcionamento do conversor do tipo Coluna de Água Oscilante, do inglês Oscillating Water Colum, (OWC) foi analisado numericamente. As ondas incidentes na câmara hidro-pneumática da OWC, causam um movimento alternado da coluna de água no interior da câmara, o qual produz um fluxo alternado de ar que passa pela chaminé. O ar passa e aciona uma turbina a qual transmite energia para um gerador elétrico. O objetivo do presente estudo foi investigar a influência de diferentes formas geométricas da câmara sobre o fluxo resultante de ar que passa pela turbina, que influencia no desempenho do dispositivo. Para isso, geometrias diferentes para o conversor foram analisadas empregando modelos computacionais 2D e 3D. Um modelo computacional desenvolvido nos softwares GAMBIT e FLUENT foi utilizado, em que o conversor OWC foi acoplado a um tanque de ondas. O método Volume of Fluid (VOF) e a teoria de 2ª ordem Stokes foram utilizados para gerar ondas regulares, permitindo uma interação mais realista entre o conversor, água, ar e OWC. O Método dos Volumes Finitos (MVF) foi utilizado para a discretização das equações governantes. Neste trabalho o Contructal Design (baseado na Teoria Constructal) foi aplicado pela primeira vez em estudos numéricos tridimensionais de OWC para fim de encontrar uma geometria que mais favorece o desempenho do dispositivo. A função objetivo foi a maximização da vazão mássica de ar que passa através da chaminé do dispositivo OWC, analisado através do método mínimos quadrados, do inglês Root Mean Square (RMS). Os resultados indicaram que a forma geométrica da câmara influencia na transformação da energia das ondas em energia elétrica. As geometrias das câmaras analisadas que apresentaram maior área da face de incidência das ondas (sendo altura constante), apresentaram também maior desempenho do conversor OWC. A melhor geometria, entre os casos desse estudo, ofereceu um ganho no desempenho do dispositivo em torno de 30% maior.
Resumo:
The goal of image retrieval and matching is to find and locate object instances in images from a large-scale image database. While visual features are abundant, how to combine them to improve performance by individual features remains a challenging task. In this work, we focus on leveraging multiple features for accurate and efficient image retrieval and matching. We first propose two graph-based approaches to rerank initially retrieved images for generic image retrieval. In the graph, vertices are images while edges are similarities between image pairs. Our first approach employs a mixture Markov model based on a random walk model on multiple graphs to fuse graphs. We introduce a probabilistic model to compute the importance of each feature for graph fusion under a naive Bayesian formulation, which requires statistics of similarities from a manually labeled dataset containing irrelevant images. To reduce human labeling, we further propose a fully unsupervised reranking algorithm based on a submodular objective function that can be efficiently optimized by greedy algorithm. By maximizing an information gain term over the graph, our submodular function favors a subset of database images that are similar to query images and resemble each other. The function also exploits the rank relationships of images from multiple ranked lists obtained by different features. We then study a more well-defined application, person re-identification, where the database contains labeled images of human bodies captured by multiple cameras. Re-identifications from multiple cameras are regarded as related tasks to exploit shared information. We apply a novel multi-task learning algorithm using both low level features and attributes. A low rank attribute embedding is joint learned within the multi-task learning formulation to embed original binary attributes to a continuous attribute space, where incorrect and incomplete attributes are rectified and recovered. To locate objects in images, we design an object detector based on object proposals and deep convolutional neural networks (CNN) in view of the emergence of deep networks. We improve a Fast RCNN framework and investigate two new strategies to detect objects accurately and efficiently: scale-dependent pooling (SDP) and cascaded rejection classifiers (CRC). The SDP improves detection accuracy by exploiting appropriate convolutional features depending on the scale of input object proposals. The CRC effectively utilizes convolutional features and greatly eliminates negative proposals in a cascaded manner, while maintaining a high recall for true objects. The two strategies together improve the detection accuracy and reduce the computational cost.
Resumo:
O trabalho desenvolvido centrou-se na preparação da acreditação NP EN ISO/IEC 17025 do Laboratório de Metrologia da empresa Frilabo para prestação de serviços na área das temperaturas, no ensaio a câmaras térmicas e na calibração de termómetros industriais. Considerando o âmbito do trabalho desenvolvido, são abordados nesta tese conceitos teóricos sobre temperatura e incertezas bem como considerações técnicas de medição da temperatura e cálculo de incertezas. São também referidas considerações sobre os diferentes tipos de câmaras térmicas e termómetros. O texto apresenta os documentos elaborados pelo autor sobre os procedimentos de ensaio a câmaras térmicas e respetivo procedimento de cálculo da incerteza. Também estão presentes neste texto documentos elaborados pelo autor sobre os procedimentos de calibração de termómetros industriais e respetivo procedimento de cálculo da incerteza. Relativamente aos ensaios a câmara térmicas e calibração de termómetros o autor elaborou os fluxogramas sobre a metodologia da medição da temperatura nos ensaios, a metodologia de medição da temperatura nas calibrações, e respetivos cálculos de incertezas. Nos diferentes anexos estão apresentados vários documentos tais como o modelo de folha de cálculo para tratamento de dados relativos ao ensaio, modelo de folha de cálculo para tratamento de dados relativo às calibrações, modelo de relatório de ensaio, modelo de certificado de calibração, folhas de cálculo para gestão de clientes/equipamentos e numeração automática de relatórios de ensaio e certificados de calibração que cumprem os requisitos de gestão do laboratório. Ainda em anexo constam todas as figuras relativas à monitorização da temperatura nas câmara térmicas como também as figuras da disposição dos termómetros no interior das câmaras térmicas. Todas as figuras que aparecem ao longo do documento que não estão referenciadas são da adaptação ou elaboração própria do autor. A decisão de alargar o âmbito da acreditação do Laboratório de Metrologia da Frilabo para calibração de termómetros, prendeu-se com o facto de que sendo acreditado como laboratório de ensaios na área das temperaturas, a realização da rastreabilidade dos padrões de medida internamente, permitiria uma gestão de recursos otimizada e rentabilizada. A metodologia da preparação de todo o processo de acreditação do Laboratório de Metrologia da Frilabo, foi desenvolvida pelo autor e está expressa ao longo do texto da tese incluindo dados relevantes para a concretização da referida acreditação nos dois âmbitos. A avaliação de todo o trabalho desenvolvido será efetuada pelo o organismo designado IPAC (Instituto Português de Acreditação) que confere a acreditação em Portugal. Este organismo irá auditar a empresa com base nos procedimentos desenvolvidos e nos resultados obtidos, sendo destes o mais importante o Balanço da Melhor Incerteza (BMI) da medição também conhecido por Melhor Capacidade de Medição (MCM), quer para o ensaio às câmaras térmicas, quer para a calibração dos termómetros, permitindo desta forma complementar os serviços prestados aos clientes fidelizados à Frilabo. As câmaras térmicas e os termómetros industriais são equipamentos amplamente utilizados em diversos segmentos industriais, engenharia, medicina, ensino e também nas instituições de investigação, sendo um dos objetivos respetivamente, a simulação de condições específicas controladas e a medição de temperatura. Para entidades acreditadas, como os laboratórios, torna-se primordial que as medições realizadas com e nestes tipos de equipamentos ostentem confiabilidade metrológica1, uma vez que, resultados das medições inadequados podem levar a conclusões equivocadas sobre os testes realizados. Os resultados obtidos nos ensaios a câmaras térmicas e nas calibrações de termómetros, são considerados bons e aceitáveis, uma vez que as melhores incertezas obtidas, podem ser comparadas, através de consulta pública do Anexo Técnico do IPAC, com as incertezas de outros laboratórios acreditados em Portugal. Numa abordagem mais experimental, pode dizer-se que no ensaio a câmaras térmicas a obtenção de incertezas mais baixas ou mais altas depende maioritariamente do comportamento, características e estado de conservação das câmaras, tornando relevante o processo de estabilização da temperatura no interior das mesmas. A maioria das fontes de incerteza na calibração dos termómetros são obtidas pelas características e especificações do fabricante dos equipamentos, que se traduzem por uma contribuição com o mesmo peso para o cálculo da incerteza expandida (a exatidão de fabricante, as incertezas herdadas de certificados de calibração, da estabilidade e da uniformidade do meio térmico onde se efetuam as calibrações). Na calibração dos termómetros as incertezas mais baixas obtêm-se para termómetros de resoluções mais baixas. Verificou-se que os termómetros com resolução de 1ºC não detetavam as variações do banho térmico. Nos termómetros com resoluções inferiores, o peso da contribuição da dispersão de leituras no cálculo da incerteza, pode variar consoante as características do termómetro. Por exemplo os termómetros com resolução de 0,1ºC, apresentaram o maior peso na contribuição da componente da dispersão de leituras. Pode concluir-se que a acreditação de um laboratório é um processo que não é de todo fácil. Podem salientar-se aspetos que podem comprometer a acreditação, como por exemplo a má seleção do ou dos técnicos e equipamentos (má formação do técnico, equipamento que não seja por exemplo adequado à gama, mal calibrado, etc…) que vão efetuar as medições. Se não for bem feita, vai comprometer todo o processo nos passos seguintes. Deve haver também o envolvimento do todos os intervenientes do laboratório, o gestor da qualidade, o responsável técnico e os técnicos, só assim é que é possível chegar à qualidade pretendida e à melhoria contínua da acreditação do laboratório. Outro aspeto importante na preparação de uma acreditação de um laboratório é a pesquisa de documentação necessária e adequada para poder tomar decisões corretas na elaboração dos procedimentos conducentes à referida. O laboratório tem de mostrar/comprovar através de registos a sua competência. Finalmente pode dizer-se que competência é a palavra chave de uma acreditação, pois ela manifesta-se nas pessoas, equipamentos, métodos, instalações e outros aspetos da instituição a que pertence o laboratório sob acreditação.
Resumo:
Optical full-field measurement methods such as Digital Image Correlation (DIC) provide a new opportunity for measuring deformations and vibrations with high spatial and temporal resolution. However, application to full-scale wind turbines is not trivial. Elaborate preparation of the experiment is vital and sophisticated post processing of the DIC results essential. In the present study, a rotor blade of a 3.2 MW wind turbine is equipped with a random black-and-white dot pattern at four different radial positions. Two cameras are located in front of the wind turbine and the response of the rotor blade is monitored using DIC for different turbine operations. In addition, a Light Detection and Ranging (LiDAR) system is used in order to measure the wind conditions. Wind fields are created based on the LiDAR measurements and used to perform aeroelastic simulations of the wind turbine by means of advanced multibody codes. The results from the optical DIC system appear plausible when checked against common and expected results. In addition, the comparison of relative out-of-plane blade deflections shows good agreement between DIC results and aeroelastic simulations.
Resumo:
Gas-liquid two-phase flow is very common in industrial applications, especially in the oil and gas, chemical, and nuclear industries. As operating conditions change such as the flow rates of the phases, the pipe diameter and physical properties of the fluids, different configurations called flow patterns take place. In the case of oil production, the most frequent pattern found is slug flow, in which continuous liquid plugs (liquid slugs) and gas-dominated regions (elongated bubbles) alternate. Offshore scenarios where the pipe lies onto the seabed with slight changes of direction are extremely common. With those scenarios and issues in mind, this work presents an experimental study of two-phase gas-liquid slug flows in a duct with a slight change of direction, represented by a horizontal section followed by a downward sloping pipe stretch. The experiments were carried out at NUEM (Núcleo de Escoamentos Multifásicos UTFPR). The flow initiated and developed under controlled conditions and their characteristic parameters were measured with resistive sensors installed at four pipe sections. Two high-speed cameras were also used. With the measured results, it was evaluated the influence of a slight direction change on the slug flow structures and on the transition between slug flow and stratified flow in the downward section.
Resumo:
La aplicación Control Camera IP, desarrolla como Proyecto Fin de Carrera en la ETS. De Ingeniería Informática de la Universidad de Málaga, fue concebida como una interfaz de usuario para la monitorización y control de cámaras IP de forma remota, pudiendo ésta ejecutarse en diferentes plataformas, incluyendo dispositivos móviles con sistemas Android. En aquel momento sin embargo, las plataformas Android no disponían de una librería oficial dentro del marco de la herramienta de desarrollo utilizada (la biblioteca de desarrollo multiplataforma Qt), por lo que fue utilizada una versión alternativa no oficial denominada Necessitas Qt for Android. Hoy, con la versión 5 de Qt, existe la posibilidad de dar soporte a las plataformas Android de forma oficial, por lo que es posible adaptar la aplicación a esta nueva versión. En este Trabajo Fin de Grado, se ha adaptado la aplicación Control Camera IP a la versión 5 de Qt, logrando así crear plataformas para dispositivos Android de forma oficial. Además, se hace uso de la biblioteca OpenCV para el desarrollo de varios métodos de procesamiento sobre la imagen recibida por la cámara IP, así como algoritmos de detección de movimiento y de caras de personas, haciendo uso de técnicas de visión por computador. Finalmente, se introduce la posibilidad de utilizar APIs estandarizadas para la conectividad de la aplicación con cámaras IP de bajo coste, adaptando algunas de sus funciones a la aplicación Control Camera IP.
Resumo:
In Robot-Assisted Rehabilitation (RAR) the accurate estimation of the patient limb joint angles is critical for assessing therapy efficacy. In RAR, the use of classic motion capture systems (MOCAPs) (e.g., optical and electromagnetic) to estimate the Glenohumeral (GH) joint angles is hindered by the exoskeleton body, which causes occlusions and magnetic disturbances. Moreover, the exoskeleton posture does not accurately reflect limb posture, as their kinematic models differ. To address the said limitations in posture estimation, we propose installing the cameras of an optical marker-based MOCAP in the rehabilitation exoskeleton. Then, the GH joint angles are estimated by combining the estimated marker poses and exoskeleton Forward Kinematics. Such hybrid system prevents problems related to marker occlusions, reduced camera detection volume, and imprecise joint angle estimation due to the kinematic mismatch of the patient and exoskeleton models. This paper presents the formulation, simulation, and accuracy quantification of the proposed method with simulated human movements. In addition, a sensitivity analysis of the method accuracy to marker position estimation errors, due to system calibration errors and marker drifts, has been carried out. The results show that, even with significant errors in the marker position estimation, method accuracy is adequate for RAR.
Resumo:
Nowadays, new computers generation provides a high performance that enables to build computationally expensive computer vision applications applied to mobile robotics. Building a map of the environment is a common task of a robot and is an essential part to allow the robots to move through these environments. Traditionally, mobile robots used a combination of several sensors from different technologies. Lasers, sonars and contact sensors have been typically used in any mobile robotic architecture, however color cameras are an important sensor due to we want the robots to use the same information that humans to sense and move through the different environments. Color cameras are cheap and flexible but a lot of work need to be done to give robots enough visual understanding of the scenes. Computer vision algorithms are computational complex problems but nowadays robots have access to different and powerful architectures that can be used for mobile robotics purposes. The advent of low-cost RGB-D sensors like Microsoft Kinect which provide 3D colored point clouds at high frame rates made the computer vision even more relevant in the mobile robotics field. The combination of visual and 3D data allows the systems to use both computer vision and 3D processing and therefore to be aware of more details of the surrounding environment. The research described in this thesis was motivated by the need of scene mapping. Being aware of the surrounding environment is a key feature in many mobile robotics applications from simple robotic navigation to complex surveillance applications. In addition, the acquisition of a 3D model of the scenes is useful in many areas as video games scene modeling where well-known places are reconstructed and added to game systems or advertising where once you get the 3D model of one room the system can add furniture pieces using augmented reality techniques. In this thesis we perform an experimental study of the state-of-the-art registration methods to find which one fits better to our scene mapping purposes. Different methods are tested and analyzed on different scene distributions of visual and geometry appearance. In addition, this thesis proposes two methods for 3d data compression and representation of 3D maps. Our 3D representation proposal is based on the use of Growing Neural Gas (GNG) method. This Self-Organizing Maps (SOMs) has been successfully used for clustering, pattern recognition and topology representation of various kind of data. Until now, Self-Organizing Maps have been primarily computed offline and their application in 3D data has mainly focused on free noise models without considering time constraints. Self-organising neural models have the ability to provide a good representation of the input space. In particular, the Growing Neural Gas (GNG) is a suitable model because of its flexibility, rapid adaptation and excellent quality of representation. However, this type of learning is time consuming, specially for high-dimensional input data. Since real applications often work under time constraints, it is necessary to adapt the learning process in order to complete it in a predefined time. This thesis proposes a hardware implementation leveraging the computing power of modern GPUs which takes advantage of a new paradigm coined as General-Purpose Computing on Graphics Processing Units (GPGPU). Our proposed geometrical 3D compression method seeks to reduce the 3D information using plane detection as basic structure to compress the data. This is due to our target environments are man-made and therefore there are a lot of points that belong to a plane surface. Our proposed method is able to get good compression results in those man-made scenarios. The detected and compressed planes can be also used in other applications as surface reconstruction or plane-based registration algorithms. Finally, we have also demonstrated the goodness of the GPU technologies getting a high performance implementation of a CAD/CAM common technique called Virtual Digitizing.
Resumo:
Animal welfare issues have received much attention not only to supply farmed animal requirements, but also to ethical and cultural public concerns. Daily collected information, as well as the systematic follow-up of production stages, produces important statistical data for production assessment and control, as well as for improvement possibilities. In this scenario, this research study analyzed behavioral, production, and environmental data using Main Component Multivariable Analysis, which correlated observed behaviors, recorded using video cameras and electronic identification, with performance parameters of female broiler breeders. The aim was to start building a system to support decision-making in broiler breeder housing, based on bird behavioral parameters. Birds were housed in an environmental chamber, with three pens with different controlled environments. Bird sensitivity to environmental conditions were indicated by their behaviors, stressing the importance of behavioral observations for modern poultry management. A strong association between performance parameters and the behavior at the nest, suggesting that this behavior may be used to predict productivity. The behaviors of ruffling feathers, opening wings, preening, and at the drinker were negatively correlated with environmental temperature, suggesting that the increase of in the frequency of these behaviors indicate improvement of thermal welfare.
Resumo:
Oceans environmental monitoring and seafloor exploitation need in situ sensors and optical devices (cameras, lights) in various locations and on various carriers in order to initiate and to calibrate environmental models or to operate underwater industrial process supervision. For more than 10 years Ifremer deploys in situ monitoring systems for various seawater parameters and in situ observation systems based on lights and HD Cameras. To be economically operational, these systems must be equipped with a biofouling protection dedicated to the sensors and optical devices used in situ. Indeed, biofouling, in less than 15 days [1] will modify the transducing interfaces of the sensors and causes unacceptable bias on the measurements provided by the in situ monitoring system. In the same way biofouling will decrease the optical properties of windows and thus altering the lighting and the quality fot he images recorded by the camera.