991 resultados para blue shift energy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: Increasing evidence suggests that left ventricular remodeling is associated with a shift from fatty acid to glucose metabolism for energy production. The aim of this study was to determine whether left ventricular remodeling with and without late-onset heart failure after myocardial infarction is associated with regional changes in the expression of regulatory proteins of glucose or fatty acid metabolism. METHODS: Myocardial infarction was induced in rats by ligation of the left anterior descending coronary artery (LAD). In infarcted and sham-operated hearts the peri-infarction region (5-mm zone surrounding the region at risk), the interventricular septum and the right ventricular free wall were separated for analysis. RESULTS: At 8 and 20 weeks after LAD ligation, the peri-infarction region and the septum exhibited marked re-expression of atrial natriuretic factor [+252+/-37 and +1093+/-279%, respectively, in the septum (P<0.05)] and of alpha-smooth muscle actin [+34+/-10 and +43+/-14%, respectively, in the septum (P<0.05)]. At 8 weeks, when left ventricular hypertrophy was present without signs of heart failure, myocardial mRNA expression of glucose transporters (GLUT-1 and GLUT-4) was not altered, whereas mRNA expression of medium-chain acyl-CoA dehydrogenase (MCAD) was significantly reduced in the peri-infarction region (-25+/-7%; P<0.05). In hearts exhibiting heart failure 20 weeks after infarct-induction there was a change in all three ventricular regions of both mRNA and protein content of GLUT-1 [+72+/-28 and +121+/-15%, respectively, in the peri-infarction region (P<0.05)] and MCAD [-29+/-9 and -56+/-4%, respectively, in the peri-infarction region (P<0.05)]. CONCLUSION: In rats with large myocardial infarction, progression from compensated remodeling to overt heart failure is associated with upregulation of GLUT-1 and downregulation of MCAD in both the peri-infarction region and the septum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The blue swimmer crab is a commercially important species of the tropical Indo-Pacific regions that shows substantial potential as a candidate species for aquaculture. Optimization of larval rearing conditions, including photoperiod, is therefore important to establish a method for the intensive hatchery culture of this species. Newly hatched larvae of Portunuspelagicus in first zoeal stage (ZI) were reared under five photoperiod regimes 0L: 24D, 6L: 18D, 12L: 12D, 18L: 6D, and 24L: 0D (5 replicates per treatment) till they metamorphosed to megalopae (ranged from 8.5 ± 0.3 days (18L: 6D) to 10.8 ± 1.8 days (0L: 24D) at 29 ± 1 °C). Daily, larvae of each treatment were fed an identical diet of mixed rotifer and Artemia nauplii, and the survival and molt to successive stages was monitored. Newly hatched ZI larvae of P. pelagicus could successfully develop to the megalopal stage under all tested photoperiod conditions, but we detected significant differences in survival among treatments (p & 0.05). The constant darkness treatment (0L: 24D) had the lowest (19.2 ± 7.2%, mean ± S.E.) cumulative survival from ZI to the megalopal stage, while the 18L: 6D treatment achieved the highest survival (51.2 ± 23.6%). Similarly, the photoperiod significantly affected zoeal development. Constant darkness led to the longest cumulative zoeal duration (10.8 ± 1.8 days), whereas the 18L: 6D treatment rendered the shortest larval development (8.5 ± 0.3 days). In addition, larvae reared under constant darkness resulted in the smallest megalopae (carapace length = 1.44 ± 0.09 mm) and the lowest dry weight (0.536 ± 0.188 mg). In conclusion, photoperiod significantly affected the survival, development, and growth of P. pelagicus zoeal larvae. Constant darkness led to the lowest larval survival and developmental rate, while a photoperiod regime of 18L: 6D appeared to be the most suitable condition for the rearing of zoeal larvae of P. pelagicus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: We characterized the pupil responses that reflect rod, cone, and melanopsin function in a genetically homogeneous cohort of patients with autosomal dominant retinitis pigmentosa (adRP). METHODS: Nine patients with Gly56Arg mutation of the NR2E3 gene and 12 control subjects were studied. Pupil and subjective visual responses to red and blue light flashes over a 7 log-unit range of intensities were recorded under dark and light adaptation. The pupil responses were plotted against stimulus intensity to obtain red-light and blue-light response curves. RESULTS: In the dark-adapted blue-light stimulus condition, patients showed significantly higher threshold intensities for visual perception and for a pupil response compared to controls (P = 0.02 and P = 0.006, respectively). The rod-dependent, blue-light pupil responses decreased with disease progression. In contrast, the cone-dependent pupil responses (light-adapted red-light stimulus condition) did not differ between patients and controls. The difference in the retinal sensitivity to blue and red stimuli was the most sensitive parameter to detect photoreceptor dysfunction. Unexpectedly, the melanopsin-mediated pupil response was decreased in patients (P = 0.02). CONCLUSIONS: Pupil responses of patients with NR2E3-associated adRP demonstrated reduced retinal sensitivity to dim blue light under dark adaptation, presumably reflecting decreased rod function. Rod-dependent pupil responses were quantifiable in all patients, including those with non-recordable scotopic electroretinogram, and correlated with the extent of clinical disease. Thus, the chromatic pupil light reflex can be used to monitor photoreceptor degeneration over a larger range of disease progression compared to standard electrophysiology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The energy metabolism in elderly subjects is discussed on the basis of previous analyses of the influence of age on the three components of energy expenditure in man: basal metabolic rate, thermogenesis and physical activity. All three components are diminished in elderly people. We conclude that the modifications of body composition, in particular the age-related loss of lean body mass, result in decreased basal metabolic rate and probably also a blunted diet-induced thermogenesis. Moreover we emphasize that the decrease in physical activity observed in elderly people is the most likely causal factor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 2011, the National Energy Retrofit Programme will build upon existing energy saving programmes in both the domestic and non-domestic sectors.  This consultation focused on key design considerations.  IPH agree with the commitment to deliver a National Energy Retrofit Programme as a sustainable means of securing energy savings and reducing energy poverty and the nations carbon footprint.  The IPH response highlighted the significant benefit to health and would support the use of Health Impact Assessment

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The draft Framework set out the proposed priorities for Northern Ireland's energy future over the next ten years or so and illustrates the key energy goals in term of competitiveness, security of energy supply, sustainablilty and infrastructure investment. It also proposes new and ambitious renewable electricity and renewable heat targets by 2020, which reflect the need for effected action against climate change and the need to address other policy goals in terms of security and sustainability of supply and costs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

IPH welcomes the Planning Policy Statement 18 Renewable Energy (PPS18) and the opportunity to comment on the publication.  IPH applies a holistic model of health which emphasises a wide range of social determinants, including economic, environmental, social and biological factors. IPH considers that the health impacts of renewable energy should be considered as part of PPS18. We wish to make the following general observations in relation to the Proposed Plan:  IPH welcomes the sustainable approach by the Department of the Environment to encourage and facilitate the provision of renewal energy in Northern Ireland. PPS18 can support the move to reduce pollutants entering the environment. However there is a need to consider wider public health concerns in the adoption of PPS18. Encouraging renewable energy (while balancing this with environmental and conservation concerns) will benefit health locally, and on a global scale. Climate change has been identified as one of the most important public health challenges of the 21st Century and therefore any policy which seeks to address this major issue is welcomed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peripheral arterial disease (PAD) is a common disease with increasing prevalence, presenting with impaired walking ability affecting patient's quality of life. PAD epidemiology is known, however, mechanisms underlying functional muscle impairment remain unclear. Using a mouse PAD model, aim of this study was to assess muscle adaptive responses during early (1 week) and late (5 weeks) disease stages. Unilateral hindlimb ischemia was induced in ApoE(-/-) mice by iliac artery ligation. Ischemic limb perfusion and oxygenation (Laser Doppler imaging, transcutaneous oxygen pressure assessments) significantly decreased during early and late stage compared to pre-ischemia, however, values were significantly higher during late versus early phase. Number of arterioles and arteriogenesis-linked gene expression increased at later stage. Walking ability, evaluated by forced and voluntary walking tests, remained significantly decreased both at early and late phase without any significant improvement. Muscle glucose uptake ([18F]fluorodeoxyglucose positron emission tomography) significantly increased during early ischemia decreasing at later stage. Gene expression analysis showed significant shift in muscle M1/M2 macrophages and Th1/Th2 T cells balance toward pro-inflammatory phenotype during early ischemia; later, inflammatory state returned to neutrality. Muscular M1/M2 shift inhibition by a statin prevented impaired walking ability in early ischemia. High-energy phosphate metabolism remained unchanged (31-Phosphorus magnetic resonance spectroscopy). Results show that rapid transient muscular inflammation contributes to impaired walking capacity while increased glucose uptake may be a compensatory mechanisms preserving immediate limb viability during early ischemia in a mouse PAD model. With time, increased ischemic limb perfusion and oxygenation assure muscle viability although not sufficiently to improve walking impairment. Subsequent decreased muscle glucose uptake may partly contribute to chronic walking impairment. Early inflammation inhibition and/or late muscle glucose impairment prevention are promising strategies for PAD management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The report presents a grammar capable of analyzing the process of production of electricity in modular elements for different power-supply systems, defined using semantic and formal categories. In this way it becomes possible to individuate similarities and differences in the process of production of electricity, and then measure and compare “apples” with “apples” and “oranges” with “oranges”. For instance, when comparing the various unit operations of the process of production of electricity with nuclear energy to the analogous unit operations of the process of production of fossil energy, we see that the various phases of the process are the same. The only difference is related to characteristics of the process associated with the generation of heat which are completely different in the two systems. As a matter of facts, the performance of the production of electricity from nuclear energy can be studied, by comparing the biophysical costs associated with the different unit operations taking place in nuclear and fossil power plants when generating process heat or net electricity. By adopting this approach, it becomes possible to compare the performance of the two power-supply systems by comparing their relative biophysical requirements for the phases that both nuclear energy power plants and fossil energy power plants have in common: (i) mining; (ii) refining/enriching; (iii) generating heat/electricity; (iv) handling the pollution/radioactive wastes. This report presents the evaluation of the biophysical requirements for the two powersupply systems: nuclear energy and fossil energy. In particular, the report focuses on the following requirements: (i) electricity; (ii) fossil-fuels, (iii) labor; and (iv) materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Report Published August 1998

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recognition by the T-cell receptor (TCR) of immunogenic peptides (p) presented by Class I major histocompatibility complexes (MHC) is the key event in the immune response against virus-infected cells or tumor cells. A study of the 2C TCR/SIYR/H-2K(b) system using a computational alanine scanning and a much faster binding free energy decomposition based on the Molecular Mechanics-Generalized Born Surface Area (MM-GBSA) method is presented. The results show that the TCR-p-MHC binding free energy decomposition using this approach and including entropic terms provides a detailed and reliable description of the interactions between the molecules at an atomistic level. Comparison of the decomposition results with experimentally determined activity differences for alanine mutants yields a correlation of 0.67 when the entropy is neglected and 0.72 when the entropy is taken into account. Similarly, comparison of experimental activities with variations in binding free energies determined by computational alanine scanning yields correlations of 0.72 and 0.74 when the entropy is neglected or taken into account, respectively. Some key interactions for the TCR-p-MHC binding are analyzed and some possible side chains replacements are proposed in the context of TCR protein engineering. In addition, a comparison of the two theoretical approaches for estimating the role of each side chain in the complexation is given, and a new ad hoc approach to decompose the vibrational entropy term into atomic contributions, the linear decomposition of the vibrational entropy (LDVE), is introduced. The latter allows the rapid calculation of the entropic contribution of interesting side chains to the binding. This new method is based on the idea that the most important contributions to the vibrational entropy of a molecule originate from residues that contribute most to the vibrational amplitude of the normal modes. The LDVE approach is shown to provide results very similar to those of the exact but highly computationally demanding method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To study energy and protein balances in elderly patients after surgery, spontaneous energy and protein intake and resting energy expenditure (REE) were measured in 20 elderly female patients with a femoral neck fracture (mean age 81 +/- 4, SD, range 74-87 years; weight 53 +/- 8, range 42-68 kg) during a 5-6 day period following surgery. REE, measured over 20-40 min by indirect calorimetry using a ventilated canopy, averaged 0.98 +/- 0.15 kcal/min on day 3 and decreased to 0.93 +/- 0.15 kcal/min on day 8-9 postsurgery (p less than 0.02). REE was positively correlated with body weight (r = 0.69, p less than 0.005). Mean REE extrapolated to 24 hr (24-REE) was 1283 +/- 194 kcal/day. Mean daily food energy intake measured over the 5-day follow-up period was 1097 +/- 333 kcal/day and was positively correlated with 24-REE (r = 0.50, p less than 0.05). Daily energy balance was -235 +/- 351 kcal/day on day 3 (p less than 0.01 vs zero) and -13 +/- 392 kcal/day on day 8-9 postsurgery (NS vs zero) with a mean over the study period of -185 +/- 289 kcal/day (p less than 0.01 vs zero). When an extra 100 kcal/day was allowed for the energy cost of physical activity, mean daily energy balance over the 5-day study period was calculated to be -285 +/- 289 kcal/day (p less than 0.01 vs zero). Measurements of total 24-hr urinary nitrogen (N) excretion were obtained in a subgroup of 14 patients.(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The recurrent ~600 kb 16p11.2 BP4-BP5 deletion is among the most frequent known genetic aetiologies of autism spectrum disorder (ASD) and related neurodevelopmental disorders. OBJECTIVE: To define the medical, neuropsychological, and behavioural phenotypes in carriers of this deletion. METHODS: We collected clinical data on 285 deletion carriers and performed detailed evaluations on 72 carriers and 68 intrafamilial non-carrier controls. RESULTS: When compared to intrafamilial controls, full scale intelligence quotient (FSIQ) is two standard deviations lower in carriers, and there is no difference between carriers referred for neurodevelopmental disorders and carriers identified through cascade family testing. Verbal IQ (mean 74) is lower than non-verbal IQ (mean 83) and a majority of carriers require speech therapy. Over 80% of individuals exhibit psychiatric disorders including ASD, which is present in 15% of the paediatric carriers. Increase in head circumference (HC) during infancy is similar to the HC and brain growth patterns observed in idiopathic ASD. Obesity, a major comorbidity present in 50% of the carriers by the age of 7 years, does not correlate with FSIQ or any behavioural trait. Seizures are present in 24% of carriers and occur independently of other symptoms. Malformations are infrequently found, confirming only a few of the previously reported associations. CONCLUSIONS: The 16p11.2 deletion impacts in a quantitative and independent manner FSIQ, behaviour and body mass index, possibly through direct influences on neural circuitry. Although non-specific, these features are clinically significant and reproducible. Lastly, this study demonstrates the necessity of studying large patient cohorts ascertained through multiple methods to characterise the clinical consequences of rare variants involved in common diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Loss of T-tubules (TT), sarcolemmal invaginations of cardiomyocytes (CMs), was recently identified as a general heart failure (HF) hallmark. However, whether TT per se or the overall sarcolemma is altered during HF process is still unknown. In this study, we directly examined sarcolemmal surface topography and physical properties using Atomic Force Microscopy (AFM) in living CMs from healthy and failing mice hearts. We confirmed the presence of highly organized crests and hollows along myofilaments in isolated healthy CMs. Sarcolemma topography was tightly correlated with elasticity, with crests stiffer than hollows and related to the presence of few packed subsarcolemmal mitochondria (SSM) as evidenced by electron microscopy. Three days after myocardial infarction (MI), CMs already exhibit an overall sarcolemma disorganization with general loss of crests topography thus becoming smooth and correlating with a decreased elasticity while interfibrillar mitochondria (IFM), myofilaments alignment and TT network were unaltered. End-stage post-ischemic condition (15days post-MI) exacerbates overall sarcolemma disorganization with, in addition to general loss of crest/hollow periodicity, a significant increase of cell surface stiffness. Strikingly, electron microscopy revealed the total depletion of SSM while some IFM heaps could be visualized beneath the membrane. Accordingly, mitochondrial Ca(2+) studies showed a heterogeneous pattern between SSM and IFM in healthy CMs which disappeared in HF. In vitro, formamide-induced sarcolemmal stress on healthy CMs phenocopied post-ischemic kinetics abnormalities and revealed initial SSM death and crest/hollow disorganization followed by IFM later disarray which moved toward the cell surface and structured heaps correlating with TT loss. This study demonstrates that the loss of crest/hollow organization of CM surface in HF occurs early and precedes disruption of the TT network. It also highlights a general stiffness increased of the CM surface most likely related to atypical IFM heaps while SSM died during HF process. Overall, these results indicate that initial sarcolemmal stress leading to SSM death could underlie subsequent TT disarray and HF setting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE OF REVIEW: The control of glucose and energy homeostasis, including feeding behaviour, is tightly regulated by gut-derived peptidic and nonpeptidic endocrine mediators, autonomic nervous signals, as well as nutrients such as glucose. We will review recent findings on the role of the gastrointestinal tract innervation and of portal vein glucose sensors; we will review selected data on the action of gastrointestinally released hormones. RECENT FINDINGS: The involvement of mechanosensory vagal afferents in postprandial meal termination has been clarified using mouse models with selective impairments of genes required for development of mechanosensory fibres. These activate central glucogen-like peptide-1/glucogen-like peptide-2 containing ascending pathways linking the visceroceptive brainstem neurons to hypothalamic nuclei. Mucosal terminals comprise the chemosensory vagal afferents responsive to postprandially released gastrointestinal hormones. The mechanism by which the hepatoportal glucose sensor stimulates glucose utilization by muscles was demonstrated, using genetically modified mice, to be insulin-independent but to require GLUT4 and AMP-kinase. This sensor is a key site of glucogen-like peptide-1 action and plays a critical role in triggering first phase insulin secretion. PeptideYY and ghrelin target intracerebral receptors as they are bidirectionally transported across the blood brain barrier. The anorectic functions of peripherally released peptideYY may however be mediated both via vagal afferents and intracerebral Y2 receptors in the brainstem and arcuate nucleus. SUMMARY: These recent findings demonstrate that the use of improved anatomical and physiological techniques and animal models with targeted gene modifications lead to an improved understanding of the complex role of gastrointestinal signals in the control of energy homeostasis.