993 resultados para biogeochemical constituents
Two new caffeoyl triterpenes and some phenolic constituents from Durio zibethinus Murr (bombacaceae)
Resumo:
Changes in the concentration of some constituents in women's saliva during the menstrual cycle were studied. Saliva was used because it is easier to collect than other body fluids and is continuously available for analysis. Glucose, the enzyme 17-Acetyl-D-glucosaminidase (NAG) and Calcium which are saliva constituents and belong to three different chemical groups were selected for the study. Several analytical techniques were investigated. The fluorometric assay procedure was found to be the best because of its specificity and sensitivity for the estimation of these constituents. resides the fluorametric method a spectrophotometric method was used in the NAG determination and an atomic absorption method in the calcium estimation. Glucose was estimated by an enzymatic method. This is based on the reaction of glucose with the enzymes glucose oxidase and peroxidase to yield hydrogen peroxide, which in turn oxidises a non-fluorescent substrate, p-hydroxyphenylacetic acid, to a highly fluorescent product. The saliva samples in this determination had to be centrifuged at high speed, heated in a boiling water bath, centrifuged again and then treated with a mixture of cation and anion resins to remove the substances that inhibited the enzyme system. In the determination of the NAG activity the saliva samples were diluted with citric acid/phosphate buffer, and then centrifuged at high speed. The assay was based on the enzymic hydrolysis of the non-fluorescent substrate 4-Methyl-umbelli1eryl-p-D-glucosaminide to the highly fluorescent 4-Methyl-umbelliferone• Calcium was estimated by a fluorometric procedure based upon the measurement of the fluorescence produced by the complex formed between calcein blue and calcium, at pH 9 - 13. From the results obtained from the analysis of saliva samples of several women it was found that glucose showed a significant increase in its level around the expected time of ovulation. This was found in seven cycles out of ten. Similar results were found with the enzyme NAG. No significant change in the calcium levels was observe& at any particular time of the cycle. The levels of the glucose, the activity of the enzyme NAG and the concentration of the calcium were found to change daily, and to differ from one subject to another and in the same subject from cycle to cycle. The increase observed it salivary glucose levels and the enzyme NAG activity could be monitored to predict the time of ovulation.
Resumo:
The production and uses of coal tar are reviewed as are the uses of steroids and cytotoxic agents in the treatment of psoriasis with a review of the condition also. An attempt was made to improve the efficaciousness and cosmetic acceptability of a low temperature tar, by screening fractions of this tar, derived from a variety of separation procedures. The most efficacious fraction was the highest boiling acid fraction, which is believed to consist mainly of mono- and di-hydric phenols. A time and concentration study showed that the optimum regime was the application of a 10% concentration in 5% wool fat in soft, yellow paraffin daily for 21 days. The mouse tail skin was selected as an experimental model, to ascertain the efficaciousness of fractions, because of the similarities between this skin and the psoriatic lesion. The activity of a fraction was monitored by the inducement of a granular layer in the mouse tail epidermis. Because coal tar is not an easy medium to work with, and the active fractions showed no increase in cosmetic acceptability over the parent coal tar, likely coal tar constituents were selected for screening on the basis of phenolic character, and the molecular weight range elucidated by mass spectroscopy. 32 potential anti-psoriatic agents were screened on mouse tail. Two catechols, 3,5-di-t-butyl and 4-t-butyl catechols were active. Other structures showed little or no activity. 24 catechols were screened and two extremely active catechols were discovered, 3-methyl-5-t-octyl and 5-methyl-3-t-octyl catechols. The screening of catechol-rich coal tar fractions and a coal tar fraction which had had the catechols removed by oxidation, showed that some anti-psoriatic activity was contained in the catechol fraction of coal tar. Attempts to elucidate the mode of action of these two compounds met with little success, but two modes of action are suggested.
Resumo:
A methodology has been developed to measure the chemical constituents associated with the settling velocity fractions that comprise a wastewater settling velocity profile (SVP). 31 wastewater samples were collected from fifteen different catchments in England and Wales. For each catchment, settling velocity and associated chemical constituent profiles were determined. The results are mainly for Suspended Solids (SS), Chemical Oxygen Demand (COD), Phosphorus (P) and Total Kjeadahl Nitrogen (TKN), however these are supplemented by the results from 5 events for a suite of heavy metals. COD, P, Hg, Mn and Pb were found to be predominantly associated with the solid phase and TKN, Al, Cu and Fe with the liquor phase of the wastewater samples. The results in the thesis are expressed as mass of pollutant (g) per mass total SS (kg). COD and P were found to be mainly associated with the sinkers and had a particular affinity for solids with settling velocities in the range 0.9-9.03mm/sec. TKN was mainly associated with the soluble phase, however of the solids that did settle, a peak was found to be associated within the settling velocity range 0.9-9.03mm/sec. The relationships identified for COD and P were generally found to be unaffected by flow conditions and catchment characteristics. However, TKN was found to be affected by catchment type. Data on the distribution of heavy metals was limited, and no specific relationships with solids were identified. 16 mean pollutant profiles are presented in the thesis. Presentation of the data in this form will enable the results to be of use in the design of sedimentation devices to predict removal efficiencies for solids and associated pollutants. The findings of the research may also be applied to modelling tools to provide further characteristics on the solids that are modelled than is currently used. This would enhance the overall performance of tools used in integrated catchment modelling.
Resumo:
Cell-wall components (cellulose, hemicellulose (oat spelt xylan), lignin (Organosolv)), and model compounds (levoglucosan (an intermediate product of cellulose decomposition) and chlorogenic acid (structurally similar to lignin polymer units)) have been investigated to probe in detail the influence of potassium on their pyrolysis behaviours as well as their uncatalysed decomposition reaction. Cellulose and lignin were pretreated to remove salts and metals by hydrochloric acid, and this dematerialized sample was impregnated with 1% of potassium as potassium acetate. Levoglucosan, xylan and chlorogenic acid were mixed with CHCOOK to introduce 1% K. Characterisation was performed using thermogravimetric analysis (TGA) and differential thermal analysis (DTA). In addition to the TGA pyrolysis, pyrolysis-gas chromatography-mass spectrometry (PY-GC-MS) analysis was introduced to examine reaction products. Potassium-catalysed pyrolysis has a huge influence on the char formation stage and increases the char yields considerably (from 7.7% for raw cellulose to 27.7% for potassium impregnated cellulose; from 5.7% for raw levoglucosan to 20.8% for levoglucosan with CHCOOK added). Major changes in the pyrolytic decomposition pathways were observed for cellulose, levoglucosan and chlorogenic acid. The results for cellulose and levoglucosan are consistent with a base catalysed route in the presence of the potassium salt which promotes complete decomposition of glucosidic units by a heterolytic mechanism and favours its direct depolymerization and fragmentation to low molecular weight components (e.g. acetic acid, formic acid, glyoxal, hydroxyacetaldehyde and acetol). Base catalysed polymerization reactions increase the char yield. Potassium-catalysed lignin pyrolysis is very significant: the temperature of maximum conversion in pyrolysis shifts to lower temperature by 70 K and catalysed polymerization reactions increase the char yield from 37% to 51%. A similar trend is observed for the model compound, chlorogenic acid. The addition of potassium does not produce a dramatic change in the tar product distribution, although its addition to chlorogenic acid promoted the generation of cyclohexane and phenol derivatives. Postulated thermal decomposition schemes for chlorogenic acid are presented. © 2008 Elsevier B.V. All rights reserved.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Mercury (Hg) contamination problem in the United Sates has been an important issue due to its potential threat to human and ecological health. This thesis presents a study of two Hg-contaminated sites along the East Fork Poplar Creek (EFPC) at Oak Ridge. The top soils from the terrestrial areas, along with the soils from three vertical soil horizons at the EFPC bank were sampled and analyzed for total-Hg (THg), methyl-Hg, total-organic-carbon (TOC), and pH. The stream bank soils were also analyzed for the stable-Hg-isotopes (198Hg, 199Hg, 200Hg, 201Hg, and 202Hg). Furthermore, some of the soil samples (n=7) from the same study sites were investigated for phytoavailability of mercury as measured by degree of Hg translocation in aboveground biomass of Impatiens walleriana plants grown in the soils.^ The results showed a significant difference (p<0.001) in THg concentrations for the forest soils (42.40±4.98 mg/kg) and the grassland soils (8.71±2.30 mg/kg). The higher THg and methyl-Hg concentrations were commensurate with the higher TOC content in the soils (p<0.001). Also, the THg concentrations for the upstream site was higher (129.08±34.14 mg/kg) than the downstream site (24.31±3.47 mg/kg). The two sites also differed in their stable Hg isotope compositions (p<0.001 for δ199Hg). The stable isotope analysis indicated the increased level of mass dependent isotopic fractionation with increasing depths along the EFPC bank. The difference between the two study sites was also prominent in case of the Hg uptake by the plants, with higher Hg uptake from the upstream soils compared to that from the downstream soils. A significant correlation, r=0.93 p<0.01, was observed between the Hg uptake and the soil-THg concentrations. THg was higher in the leaves (1161.87±310.01 μg/kg) than in the flowers (206.13±55.23 μg/kg) or the stems (634.54±403.35μg/kg). ^ The level of Hg contamination increased with decreasing distance from the point source and was highly influenced by plants/microbes, soil-organic-content, and Hg-speciation. The isotopic study indicated the existence of an additional Hg source in the EFPC watershed, possibly atmospheric Hg-deposition. These findings are worth taking into account while planning any Hg remediation effort and developing Hg loading criteria as per the National Pollutant Discharge Elimination System (NPDES) Program.^
Resumo:
We completed a synoptic survey of iron, phosphorus, and sulfur concentrations in shallow marine carbonate sediments from south Florida. Total extracted iron concentrations typically were 50 μmol g-1 dry weight (DW) and tended to decrease away from the Florida mainland, whereas total extracted phosphorus concentrations mostly were 10 μmol g-1 DW and tended to decrease from west to east across Florida Bay. Concentrations of reduced sulfur compounds, up to 40 μmol g-1 DW, tended to covary with sediment iron concentrations, suggesting that sulfide mineral formation was iron-limited. An index of iron availability derived from sediment data was negatively correlated with chlorophyll a concentrations in surface waters, demonstrating the close coupling of sediment-water column processes. Eight months after applying a surface layer of iron oxide granules to experimental plots, sediment iron, phosphorus, and sulfur were elevated to a depth of 10 cm relative to control plots. Biomass of the seagrass Thalassia testudinum was not different between control and iron addition plots, but individual shoot growth rates were significantly higher in experimental plots after 8 months. Although the iron content of leaf tissues was significantly higher from iron addition plots, no difference in phosphorus content of T. testudinum leaves was observed. Iron addition altered plant exposure to free sulfide, documented by a significantly higher δ34S of leaf tissue from experimental plots relative to controls. Iron as a buffer to toxic sulfides may promote individual shoot growth, but phosphorus availability to plants still appears to limit production in carbonate sediments.
Resumo:
Periphyton is an important component of the Everglades biogeochemical cycle but remains poorly understood. From a biogeochemical perspective, periphyton is a dense aggregation of diverse microorganisms (autotrophic and heterotrophic) and particles (mineral and detrital) imbedded within an extracellular matrix. The authors synthesize Everglades periphyton biogeochemistry and diversity at the ecosystem and community scales. The primary regulator of biogeochemical processes (material flux, transformation, and storage) is photosynthesis, which controls oxidation-reduction potentials and heterotrophic metabolism. Eutrophication and hydrologic alterations have resulted in fundamental periphyton biogeochemical differences. Elucidation of these processes is required to predict and interpret responses to ecosystem restoration.