837 resultados para basement deformation
Resumo:
The Sør Rondane Mountains (SRM) in eastern Dronning Maud Land (DML) are located in an area, where two apparent Pan-African (650-520 Ma) orogenic mobile belts appear to intersect, the East African-Antarctic Orogen and the Kuunga Orogen. Hence, a better understanding of the tectonic structure of the Sør Rondane region is an important key for unravelling the complex geodynamic evolution of the eastern DML and adjacent regions of East Antarctica during the Late Neoproterozoic/Early Palaeozoic amalgamation of Gondwana. The SRM were recently (2011-2012) aerogeophysically investigated with a 5 km flight line spacing, covering a total area of ~140,000 km². The aeromagnetic data are correlated with ground-based magnetic susceptibility measurements and geological field data and allow to project tectonic terranes and individual structures into ice-covered areas. Magnetic anomalies and basement foliation trends are collinear in areas dominated by simple shear deformation, whereas an area of large-scale refolding correlates with a subdued small-scale broken magnetic anomaly pattern. The latter area can be regarded as a distinct tectonic domain, the central Sør Rondane corridor. It magnetically separates the SRM into an eastern, a central, and a western portion. This subdivision is presumably related to late Pan-African extensional tectonics and suggests that such a tectonic regime may play a larger role than previously assumed. Voluminous late Pan-African granitoids, which are mainly undeformed, correlate with positive magnetic anomalies between +30 and +80 nT, while a strong magnetic high (+680 nT) near the granitic intrusion at Dufekfjellet is caused by a highly magnetised enigmatic body. The recently discovered prominent magnetic anomaly province of southeastern DML continues into the southern part of the Sør Rondane region, where only a few outcrops are exposed. Findings at these westernmost nunataks of the SRM indicate that the subdued magnetic anomaly pattern of this southeastern DML province is most likely caused by the predominance of metasedimentary rocks of yet unknown age.
Resumo:
Very fine quartz sand was examined from Paleogene and Neogene sediments of ODP Sites 693, 694, 695, 696, and 697 to determine their grain roundness using Fourier analysis and SEM surface texture characteristics. The objective of this study was to identify grain roundness and surface texture characteristics unique to East (Site 693) and West (Sites 695, 696, and 697) Antarctica and to glacial regimes. Once identified, these distinguishing features could then be used to determine changes in source area and glacial conditions in the central Weddell Sea Basin (Site 694). Three end members of very fine quartz sand are recognized in the Oligocene to Pleistocene sediments of the Weddell Sea: angular, rounded, and intermediate. End member 1 (angular) consists of extremely angular grains with numerous fracture textures. Previous investigations suggested that these sands are derived from crystalline rocks that fractured during formation or deformation and/or were exposed to weathering by ice. In this study, however, the correlation of angularity with ice activity is problematical as the most angular sands were recovered in the lower Oligocene sediments of the South Orkney Microcontinent, a period of temperate climatic conditions. End member 3 (rounded) consists of rounded grains with chemically and mechanically produced surface textures. These sands are presumed to be derived from the Beacon-type rocks in East Antarctica and the sedimentary deposits of the Northern Antarctic Peninsula. End member 2 (intermediate) grains display crystalline nodes and grain embayments. They are thought to be derived from felsic intrusives, East Antarctic quartzites, basement metamorphics of the South Orkney Microcontinent, and/or the Andean intrusive series of West Antarctica. Unfortunately, no features unique to either the East or West Antarctic sediment sources or to glacial conditions could be isolated. Therefore, the objective of determining provenance changes and sediment erosion and transport mechanisms could not be achieved using this approach.
Resumo:
Many studies argue, based partly on Pb isotopic evidence, that recycled, subducted slabs reside in the mantle source of ocean island basalts (OIB) (Hofmann and White, 1982, doi:10.1016/0012-821X(82)90161-3; Weaver, 1991 doi:10.1016/0012-821X(91)90217-6; Lassiter, and Hauri, 1998, doi:10.1016/S0012-821X(98)00240-4). Such models, however, have remained largely untested against actual subduction zone inputs, due to the scarcity of comprehensive measurements of both radioactive parents (Th and U) and radiogenic daughter (Pb) in altered oceanic crust (AOC). Here, we discuss new, comprehensive measurements of U, Th, and Pb concentrations in the oldest AOC, ODP Site 801, and consider the effect of subducting this crust on the long-term Pb isotope evolution of the mantle. The upper 500 m of AOC at Site 801 shows >4-fold enrichment in U over pristine glass during seafloor alteration, but no net change to Pb or Th. Without subduction zone processing, ancient AOC would evolve to low 208Pb/206Pb compositions unobserved in the modern mantle (Hart and Staudigel, 1989 [Isotopic characterization and identification of recycled components, in: Crust/Mantle Recycling at Convergence Zones, Eds. S.R. Hart, L. Gqlen, NATO ASI Series. Series C: Mathematical and Physical Sciences 258, pp. 15-28, D. Reidel Publishing Company, Dordrecht-Boston, 1989]). Subduction, however, drives U-Th-Pb fractionation as AOC dehydrates in the earth's interior. Pacific arcs define mixing trends requiring 8-fold enrichment in Pb over U in AOC-derived fluid. A mass balance across the Mariana subduction zone shows that 44-75% of Pb but <10% of U is lost from AOC to the arc, and a further 10-23% of Pb and 19-40% of U is lost to the back-arc. Pb is lost shallow and U deep from subducted AOC, which may be a consequence of the stability of phases binding these elements during seafloor alteration: U in carbonate and Pb in sulfides. The upper end of these recycling estimates, which reflect maximum arc and back-arc growth rates, remove enough Pb and U from the slab to enable it to evolve rapidly (<<0.5 Ga) to sources suitable to explain the 208Pb/206Pb isotopic array of OIB, although these conditions fail to simultaneously satisfy the 207Pb/206Pb system. Lower growth rates would require additional U loss (29%) at depths beyond the zones of arc and back-arc magmagenesis, which would decrease upper mantle kappa (232Th/238U) over time, consistent with one solution to the "kappa conundrum" (Elliott et al., 1999, doi:10.1016/S0012-821X(99)00077-1). The net effects of alteration (doubling of l [238U/204Pb]) and subduction (doubling of omega [232Th/204Pb]) are sufficient to create the Pb isotopic signatures of oceanic basalts.
Resumo:
Whole rock sulfur and oxygen isotope compositions of altered peridotites and gabbros from near the 15°20'N Fracture Zone on the Mid-Atlantic Ridge were analyzed to investigate hydrothermal alteration processes and test for a subsurface biosphere in oceanic basement. Three processes are identified. (1) High-temperature hydrothermal alteration (~250-350°C) at Sites 1268 and 1271 is characterized by 18O depletion (2.6-4.4 per mil), elevated sulfide-S, and high delta34S (up to ~2 wt% and 4.4-10.8 per mil). Fluids were derived from high-temperature (>350°C) reaction of seawater with gabbro at depth. These cores contain gabbroic rocks, suggesting that associated heat may influence serpentinization. (2) Low-temperature (<150°C) serpentinization at Sites 1272 and 1274 is characterized by elevated delta18O (up to 8.1 per mil), high sulfide-S (up to ~3000 ppm), and negative delta34S (to -32.1 per mil) that reflect microbial reduction of seawater sulfate. These holes penetrate faults at depth, suggesting links between faulting and temperatures of serpentinization. (3) Late low-temperature oxidation of sulfide minerals caused loss of sulfur from rocks close to the seafloor. Sulfate at all sites contains a component of oxidized sulfide minerals. Low delta34S of sulfate may result from kinetic isotope fractionation during oxidation or may indicate readily oxidized low-delta34S sulfide derived from microbial sulfate reduction. Results show that peridotite alteration may be commonly affected by fluids +/- heat derived from mafic intrusions and that microbial sulfate reduction is widespread in mantle exposed at the seafloor.
Resumo:
Hole 1256C was cored 88.5 m into basement, and Hole 1256D, the deep reentry hole, was cored 502 m into basement during Ocean Drilling Program Leg 206. Hole 1256D is located ~30 m south of Hole 1256C (Wilson, Teagle, Acton, et al., 2003, doi:10.2973/odp.proc.ir.206.2003). A thick massive flow drilled in both holes, Units 1256C-18 and 1256D-1, consists of a single cooling unit of cryptocrystalline to fine-grained basalt, interpreted as a ponded lava, 32 m and at least 74.2 m thick, respectively. This ponded flow gives us a unique opportunity to examine textural variations from the glassy, folded crust of the lava pond recovered from the top of Unit 1256C-18 through the coarse-grained, thick massive lava body to the unusually recrystallized and deformed base cored in Unit 1256C-18. Some detailed descriptions of the textures and grain size variations through the lava pond (Units 1256C-18 and 1256D-1), with special reference to the recrystallization of the base of Unit 1256C-18, are presented here.