927 resultados para attentional biases
Resumo:
We consider forecasting with factors, variables and both, modeling in-sample using Autometrics so all principal components and variables can be included jointly, while tackling multiple breaks by impulse-indicator saturation. A forecast-error taxonomy for factor models highlights the impacts of location shifts on forecast-error biases. Forecasting US GDP over 1-, 4- and 8-step horizons using the dataset from Stock and Watson (2009) updated to 2011:2 shows factor models are more useful for nowcasting or short-term forecasting, but their relative performance declines as the forecast horizon increases. Forecasts for GDP levels highlight the need for robust strategies, such as intercept corrections or differencing, when location shifts occur as in the recent financial crisis.
Resumo:
The results of coupled high resolution global models (CGCMs) over South America are discussed. HiGEM1.2 and HadGEM1.2 simulations, with horizontal resolution of ~90 and 135 km, respectively, are compared. Precipitation estimations from CMAP (Climate Prediction Center—Merged Analysis of Precipitation), CPC (Climate Prediction Center) and GPCP (Global Precipitation Climatology Project) are used for validation. HiGEM1.2 and HadGEM1.2 simulated seasonal mean precipitation spatial patterns similar to the CMAP. The positioning and migration of the Intertropical Convergence Zone and of the Pacific and Atlantic subtropical highs are correctly simulated by the models. In HiGEM1.2 and HadGEM1.2, the intensity and locations of the South Atlantic Convergence Zone are in agreement with the observed dataset. The simulated annual cycles are in phase with estimations of rainfall for most of the six regions considered. An important result is that HiGEM1.2 and HadGEM1.2 eliminate a common problem of coarse resolution CGCMs, which is the simulation of a semiannual cycle of precipitation due to the semiannual solar forcing. Comparatively, the use of high resolution in HiGEM1.2 reduces the dry biases in the central part of Brazil during austral winter and spring and in most part of the year over an oceanic box in eastern Uruguay.
Resumo:
The primary role of land surface models embedded in climate models is to partition surface available energy into upwards, radiative, sensible and latent heat fluxes. Partitioning of evapotranspiration, ET, is of fundamental importance: as a major component of the total surface latent heat flux, ET affects the simulated surface water balance, and related energy balance, and consequently the feedbacks with the atmosphere. In this context it is also crucial to credibly represent the CO2 exchange between ecosystems and their environment. In this study, JULES, the land surface model used in UK weather and climate models, has been evaluated for temperate Europe. Compared to eddy covariance flux measurements, the CO2 uptake by the ecosystem is underestimated and the ET overestimated. In addition, the contribution to ET from soil and intercepted water evaporation far outweighs the contribution of plant transpiration. To alleviate these biases, adaptations have been implemented in JULES, based on key literature references. These adaptations have improved the simulation of the spatio-temporal variability of the fluxes and the accuracy of the simulated GPP and ET, including its partitioning. This resulted in a shift of the seasonal soil moisture cycle. These adaptations are expected to increase the fidelity of climate simulations over Europe. Finally, the extreme summer of 2003 was used as evaluation benchmark for the use of the model in climate change studies. The improved model captures the impact of the 2003 drought on the carbon assimilation and the water use efficiency of the plants. It, however, underestimates the 2003 GPP anomalies. The simulations showed that a reduction of evaporation from the interception and soil reservoirs, albeit not of transpiration, largely explained the good correlation between the carbon and the water fluxes anomalies that was observed during 2003. This demonstrates the importance of being able to discriminate the response of individual component of the ET flux to environmental forcing.
Resumo:
The SuperDARN chain of oblique HF radars has provided an opportunity to generate a unique climatology of horizontal winds near the mesopause at a number of high latitude locations, via the Doppler shifted echoes from sources of ionisation in the D-region. Ablating meteor trails form the bulk of these targets, but other phenomena also contribute to the observations. Due to the poor vertical resolution of the radars, care must be taken to reduce possible biases from sporadic-E layers and Polar Mesospheric Summer echoes that can affect the effective altitude of the geophysical parameters being observed. Second, there is strong theoretical and observational evidence to suggest that the radars are picking up echoes from the backward looking direction that will tend to reduce the measured wind strengths. The effect is strongly frequency dependent, resulting in a 20% reduction at 12 MHz and a 50% reduction at 10 MHz. A comparison of the climatologies observed by the Super-DARN Finland radar between September 1999 and September 2000 and that obtained from the adjacent VHF meteor radar located at Kiruna is also presented. The agreement between the two instruments was very good. Extending the analysis to the SuperDARN Iceland East radar indicated that the principles outlined above could be applied successfully to the rest of the SuperDARN network.
Resumo:
The ability of the climate models participating in phase 5 of the Coupled Model Intercomparison Project (CMIP5) to simulate North Atlantic extratropical cyclones in winter [December–February (DJF)] and summer [June–August (JJA)] is investigated in detail. Cyclones are identified as maxima in T42 vorticity at 850 hPa and their propagation is tracked using an objective feature-tracking algorithm. By comparing the historical CMIP5 simulations (1976–2005) and the ECMWF Interim Re-Analysis (ERA-Interim; 1979–2008), the authors find that systematic biases affect the number and intensity of North Atlantic cyclones in CMIP5 models. In DJF, the North Atlantic storm track tends to be either too zonal or displaced southward, thus leading to too few and weak cyclones over the Norwegian Sea and too many cyclones in central Europe. In JJA, the position of the North Atlantic storm track is generally well captured but some CMIP5 models underestimate the total number of cyclones. The dynamical intensity of cyclones, as measured by either T42 vorticity at 850 hPa or mean sea level pressure, is too weak in both DJF and JJA. The intensity bias has a hemispheric character, and it cannot be simply attributed to the representation of the North Atlantic large- scale atmospheric state. Despite these biases, the representation of Northern Hemisphere (NH) storm tracks has improved since CMIP3 and some CMIP5 models are able of representing well both the number and the intensity of North Atlantic cyclones. In particular, some of the higher-atmospheric-resolution models tend to have a better representation of the tilt of the North Atlantic storm track and of the intensity of cyclones in DJF.
Resumo:
Future climate change projections are often derived from ensembles of simulations from multiple global circulation models using heuristic weighting schemes. This study provides a more rigorous justification for this by introducing a nested family of three simple analysis of variance frameworks. Statistical frameworks are essential in order to quantify the uncertainty associated with the estimate of the mean climate change response. The most general framework yields the “one model, one vote” weighting scheme often used in climate projection. However, a simpler additive framework is found to be preferable when the climate change response is not strongly model dependent. In such situations, the weighted multimodel mean may be interpreted as an estimate of the actual climate response, even in the presence of shared model biases. Statistical significance tests are derived to choose the most appropriate framework for specific multimodel ensemble data. The framework assumptions are explicit and can be checked using simple tests and graphical techniques. The frameworks can be used to test for evidence of nonzero climate response and to construct confidence intervals for the size of the response. The methodology is illustrated by application to North Atlantic storm track data from the Coupled Model Intercomparison Project phase 5 (CMIP5) multimodel ensemble. Despite large variations in the historical storm tracks, the cyclone frequency climate change response is not found to be model dependent over most of the region. This gives high confidence in the response estimates. Statistically significant decreases in cyclone frequency are found on the flanks of the North Atlantic storm track and in the Mediterranean basin.
Resumo:
An extensive off-line evaluation of the Noah/Single Layer Urban Canopy Model (Noah/SLUCM) urban land-surface model is presented using data from 15 sites to assess (1) the ability of the scheme to reproduce the surface energy balance observed in a range of urban environments, including seasonal changes, and (2) the impact of increasing complexity of input parameter information. Model performance is found to be most dependent on representation of vegetated surface area cover; refinement of other parameter values leads to smaller improvements. Model biases in net all-wave radiation and trade-offs between turbulent heat fluxes are highlighted using an optimization algorithm. Here we use the Urban Zones to characterize Energy partitioning (UZE) as the basis to assign default SLUCM parameter values. A methodology (FRAISE) to assign sites (or areas) to one of these categories based on surface characteristics is evaluated. Using three urban sites from the Basel Urban Boundary Layer Experiment (BUBBLE) dataset, an independent evaluation of the model performance with the parameter values representative of each class is performed. The scheme copes well with both seasonal changes in the surface characteristics and intra-urban heterogeneities in energy flux partitioning, with RMSE performance comparable to similar state-of-the-art models for all fluxes, sites and seasons. The potential of the methodology for high-resolution atmospheric modelling application using the Weather Research and Forecasting (WRF) model is highlighted. This analysis supports the recommendations that (1) three classes are appropriate to characterize the urban environment, and (2) that the parameter values identified should be adopted as default values in WRF.
Resumo:
This paper presents measurements of the vertical distribution of aerosol extinction coefficient over West Africa during the Dust and Biomass-burning Aerosol Experiment (DABEX)/African Monsoon Multidisciplinary Analysis dry season Special Observing Period Zero (AMMA-SOP0). In situ aircraft measurements from the UK FAAM aircraft have been compared with two ground-based lidars (POLIS and ARM MPL) and an airborne lidar on an ultralight aircraft. In general, mineral dust was observed at low altitudes (up to 2 km), and a mixture of biomass burning aerosol and dust was observed at altitudes of 2–5 km. The study exposes difficulties associated with spatial and temporal variability when intercomparing aircraft and ground measurements. Averaging over many profiles provided a better means of assessing consistent errors and biases associated with in situ sampling instruments and retrievals of lidar ratios. Shortwave radiative transfer calculations and a 3-year simulation with the HadGEM2-A climate model show that the radiative effect of biomass burning aerosol was somewhat sensitive to the vertical distribution of aerosol. In particular, when the observed low-level dust layer was included in the model, the absorption of solar radiation by the biomass burning aerosols increased by 10%. We conclude that this absorption enhancement was caused by the dust reflecting solar radiation up into the biomass burning aerosol layer. This result illustrates that the radiative forcing of anthropogenic absorbing aerosol can be sensitive to the presence of natural aerosol species.
Resumo:
This paper addresses issues raised in two recent papers published in this journal about the UK Association of Business Schools' Journal Quality Guide (ABS Guide). While much of the debate about journal rankings in general, and the ABS Guide in particular, has focused on the construction, power and (mis)use of these rankings, this paper differs in that it explains and provides evidence about explicit and implicit biases in the ABS Guide. In so doing, it poses potentially difficult questions that the editors of the ABS Guide need to address and urgently rectify if the ABS Guide seeks to build and retain legitimacy. In particular, the evidence in this paper shows explicit bias in the ABS Guide against several subject areas, including accounting and finance. It also shows implicit bias against accounting and finance when comparing journal rankings in sub-areas shared between accounting and finance and the broader business management subject areas.
Resumo:
The dependence of the annual mean tropical precipitation on horizontal resolution is investigated in the atmospheric version of the Hadley Centre General Environment Model (HadGEM1). Reducing the grid spacing from about 350 km to 110 km improves the precipitation distribution in most of the tropics. In particular, characteristic dry biases over South and Southeast Asia including the Maritime Continent as well as wet biases over the western tropical oceans are reduced. The annual-mean precipitation bias is reduced by about one third over the Maritime Continent and the neighbouring ocean basins associated with it via the Walker circulation. Sensitivity experiments show that much of the improvement with resolution in the Maritime Continent region is due to the specification of better resolved surface boundary conditions (land fraction, soil and vegetation parameters) at the higher resolution. It is shown that in particular the formulation of the coastal tiling scheme may cause resolution sensitivity of the mean simulated climate. The improvement in the tropical mean precipitation in this region is not primarily associated with the better representation of orography at the higher resolution, nor with changes in the eddy transport of moisture. Sizeable sensitivity to changes in the surface fields may be one of the reasons for the large variation of the mean tropical precipitation distribution seen across climate models.
Resumo:
Although difference-stationary (DS) and trend-stationary (TS) processes have been subject to considerable analysis, there are no direct comparisons for each being the data-generation process (DGP). We examine incorrect choice between these models for forecasting for both known and estimated parameters. Three sets of Monte Carlo simulations illustrate the analysis, to evaluate the biases in conventional standard errors when each model is mis-specified, compute the relative mean-square forecast errors of the two models for both DGPs, and investigate autocorrelated errors, so both models can better approximate the converse DGP. The outcomes are surprisingly different from established results.
Resumo:
Under particular large-scale atmospheric conditions, several windstorms may affect Europe within a short time period. The occurrence of such cyclone families leads to large socioeconomic impacts and cumulative losses. The serial clustering of windstorms is analyzed for the North Atlantic/western Europe. Clustering is quantified as the dispersion (ratio variance/mean) of cyclone passages over a certain area. Dispersion statistics are derived for three reanalysis data sets and a 20-run European Centre Hamburg Version 5 /Max Planck Institute Version–Ocean Model Version 1 global climate model (ECHAM5/MPI-OM1 GCM) ensemble. The dependence of the seriality on cyclone intensity is analyzed. Confirming previous studies, serial clustering is identified in reanalysis data sets primarily on both flanks and downstream regions of the North Atlantic storm track. This pattern is a robust feature in the reanalysis data sets. For the whole area, extreme cyclones cluster more than nonextreme cyclones. The ECHAM5/MPI-OM1 GCM is generally able to reproduce the spatial patterns of clustering under recent climate conditions, but some biases are identified. Under future climate conditions (A1B scenario), the GCM ensemble indicates that serial clustering may decrease over the North Atlantic storm track area and parts of western Europe. This decrease is associated with an extension of the polar jet toward Europe, which implies a tendency to a more regular occurrence of cyclones over parts of the North Atlantic Basin poleward of 50°N and western Europe. An increase of clustering of cyclones is projected south of Newfoundland. The detected shifts imply a change in the risk of occurrence of cumulative events over Europe under future climate conditions.
Resumo:
Past climates provide a test of models’ ability to predict climate change. We present a comprehensive evaluation of state-of-the-art models against Last Glacial Maximum and mid-Holocene climates, using reconstructions of land and ocean climates and simulations from the Palaeoclimate Modelling and Coupled Modelling Intercomparison Projects. Newer models do not perform better than earlier versions despite higher resolution and complexity. Differences in climate sensitivity only weakly account for differences in model performance. In the glacial, models consistently underestimate land cooling (especially in winter) and overestimate ocean surface cooling (especially in the tropics). In the mid-Holocene, models generally underestimate the precipitation increase in the northern monsoon regions, and overestimate summer warming in central Eurasia. Models generally capture large-scale gradients of climate change but have more limited ability to reproduce spatial patterns. Despite these common biases, some models perform better than others.
Resumo:
We present a benchmark system for global vegetation models. This system provides a quantitative evaluation of multiple simulated vegetation properties, including primary production; seasonal net ecosystem production; vegetation cover; composition and height; fire regime; and runoff. The benchmarks are derived from remotely sensed gridded datasets and site-based observations. The datasets allow comparisons of annual average conditions and seasonal and inter-annual variability, and they allow the impact of spatial and temporal biases in means and variability to be assessed separately. Specifically designed metrics quantify model performance for each process, and are compared to scores based on the temporal or spatial mean value of the observations and a "random" model produced by bootstrap resampling of the observations. The benchmark system is applied to three models: a simple light-use efficiency and water-balance model (the Simple Diagnostic Biosphere Model: SDBM), the Lund-Potsdam-Jena (LPJ) and Land Processes and eXchanges (LPX) dynamic global vegetation models (DGVMs). In general, the SDBM performs better than either of the DGVMs. It reproduces independent measurements of net primary production (NPP) but underestimates the amplitude of the observed CO2 seasonal cycle. The two DGVMs show little difference for most benchmarks (including the inter-annual variability in the growth rate and seasonal cycle of atmospheric CO2), but LPX represents burnt fraction demonstrably more accurately. Benchmarking also identified several weaknesses common to both DGVMs. The benchmarking system provides a quantitative approach for evaluating how adequately processes are represented in a model, identifying errors and biases, tracking improvements in performance through model development, and discriminating among models. Adoption of such a system would do much to improve confidence in terrestrial model predictions of climate change impacts and feedbacks.
Resumo:
The Chinese Loess Plateau (CLP) contains an extensive record of aeolian deposition through multiple glacial–interglacial cycles. Independent chronologies based on pedostratigraphy, magnetic susceptibility, radiocarbon and luminescence dating were developed for 79 sites and used to estimate aeolian mass accumulation rates (MARs) for marine isotope stages 1–5. The regional median value of MAR for Stage 2 is 310 g/m2/yr compared to an estimate of 65 g/m2/yr for Stage 5. Estimated MARs from individual sites for Stage 2 are approximately 4.3 times greater than MARs for Stage 5 and 2.1 times greater than for Stage 1. MAR values at individual sites are consistently highest in the northwest and lowest in the southwest of the CLP during all marine isotope stages. MARs estimated on sections through loess terraces are consistently higher than MAR estimates at other sites, indicating that local recycling of loess material from exposed river valley deposits has been significant throughout the last 130 kyr. Although the spatial and temporal patterns in MAR are robust, there are uncertainties about the magnitude of these changes due to (a) lack of bulk density measurements and uncertainties in the chronologies for individual sites, (b) site and chronological biases in the sampling used to derive regional estimates, and (c) the unquantified nature of human impact on accumulation rates during the late Holocene. Nevertheless, the records from the CLP pose a number of challenges which could be addressed by numerical models of the palaeo-dust cycle.