859 resultados para artificial neural networks (ANNs)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Física - IGCE
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Considering the relevance of researches concerning credit risk, model diversity and the existent indicators, this thesis aimed at verifying if the Fleuriet Model contributes in discriminating Brazilian open capital companies in the analysis of credit concession. We specifically intended to i) identify the economic-financial indicators used in credit risk models; ii) identify which economic-financial indicators best discriminate companies in the analysis of credit concession; iii) assess which techniques used (discriminant analysis, logistic regression and neural networks) present the best accuracy to predict company bankruptcy. To do this, the theoretical background approached the concepts of financial analysis, which introduced themes relative to the company evaluation process; considerations on credit, risk and analysis; Fleuriet Model and its indicators, and, finally, presented the techniques for credit analysis based on discriminant analysis, logistic regression and artificial neural networks. Methodologically, the research was defined as quantitative, regarding its nature, and explanatory, regarding its type. It was developed using data derived from bibliographic and document analysis. The financial demonstrations were collected by means of the Economática ® and the BM$FBOVESPA website. The sample was comprised of 121 companies, being those 70 solvents and 51 insolvents from various sectors. In the analyses, we used 22 indicators of the Traditional Model and 13 of the Fleuriet Model, totalizing 35 indicators. The economic-financial indicators which were a part of, at least, one of the three final models were: X1 (Working Capital over Assets), X3 (NCG over Assets), X4 (NCG over Net Revenue), X8 (Type of Financial Structure), X9 (Net Thermometer), X16 (Net Equity divided by the total demandable), X17 (Asset Turnover), X20 (Net Equity Profitability), X25 (Net Margin), X28 (Debt Composition) and X31 (Net Equity over Asset). The final models presented setting values of: 90.9% (discriminant analysis); 90.9% (logistic regression) and 97.8% (neural networks). The modeling in neural networks presented higher accuracy, which was confirmed by the ROC curve. In conclusion, the indicators of the Fleuriet Model presented relevant results for the research of credit risk, especially if modeled by neural networks.
Resumo:
The increased demand for using the Industrial, Scientific and Medical (ISM) unlicensed frequency spectrum has caused interference problems and lack of resource availability for wireless networks. Cognitive radio (CR) have emerged as an alternative to reduce interference and intelligently use the spectrum. Several protocols were proposed aiming to mitigate these problems, but most have not been implemented in real devices. This work presents an architecture for Intelligent Sensing for Cognitive Radios (ISCRa), and a spectrum decision model (SDM) based on Artificial Neural Networks (ANN), which uses as input a database with local spectrum behavior and a database with primary users information. For comparison, a spectrum decision model based on AHP, which employs advanced techniques in its spectrum decision method was implemented. Another spectrum decision model that considers only a physical parameter for channel classification was also implemented. Spectrum decision models evaluated, as well as ISCRa's architecture were developed in GNU-Radio framework and implemented on real nodes. Evaluation of SDMs considered metrics of: delivery rate, latency (Round Trip Time - RTT) and handoff. Experiments on real nodes showed that ISCRa architecture with ANN based SDM increased packet delivery rate and presented fewer frequency variation (handoff) while maintaining latency. Considering higher bandwidth as application's Quality of Service requirement, ANN-SDM obtained the best results when compared to other SDM for cognitive radio networks (CRN).
Resumo:
The best description of water resources for Grand Turk was offered by Pérez Monteagudo (2000) who suggested that rain water was insufficient to ensure a regular water supply although water catchment was being practised and water catchment possibilities had been analysed. Limestone islands, mostly flat and low lying, have few possibilities for large scale surface storage, and groundwater lenses exist in very delicate equilibrium with saline seawater, and are highly likely to collapse due to sea level rise, improper extraction, drought, tidal waves or other extreme event. A study on the impact of climate change on water resources in the Turks and Caicos Islands is a challenging task, due to the fact that the territory of the Islands covers different environmental resources and conditions, and accurate data are lacking. The present report is based on collected data wherever possible, including grey data from several sources such as the Intergovernmental Panel on Climate Change (IPCC) and Cuban meteorological service data sets. Other data were also used, including the author’s own estimates and modelling results. Although challenging, this was perhaps the best approach towards analysing the situation. Furthermore, IPCC A2 and B2 scenarios were used in the present study in an effort to reduce uncertainty. The main conclusion from the scenario approach is that the trend observed in precipitation during the period 1961 - 1990 is decreasing. Similar behaviour was observed in the Caribbean region. This trend is associated with meteorological causes, particularly with the influence of the North Atlantic Anticyclone. The annual decrease in precipitation is estimated to be between 30-40% with uncertain impacts on marine resources. After an assessment of fresh water resources in Turks and Caicos Islands, the next step was to estimate residential water demand based on a high fertility rate scenario for the Islands (one selected from four scenarios and compared to countries having similar characteristics). The selected scenario presents higher projections on consumption growth, enabling better preparation for growing water demand. Water demand by tourists (stopover and excursionists, mainly cruise passengers) was also obtained, based on international daily consumption estimates. Tourism demand forecasts for Turks and Caicos Islands encompass the forty years between 2011 and 2050 and were obtained by means of an Artificial Neural Networks approach. for the A2 and B2 scenarios, resulting in the relation BAU>B2>A2 in terms of tourist arrivals and water demand levels from tourism. Adaptation options and policies were analysed. Resolving the issue of the best technology to be used for Turks and Caicos Islands is not directly related to climate change. Total estimated water storage capacity is about 1, 270, 800 m3/ year with 80% capacity load for three plants. However, almost 11 desalination plants have been detected on Turks and Caicos Islands. Without more data, it is not possible to estimate long term investment to match possible water demand and more complex adaptation options. One climate change adaptation option would be the construction of elevated (30 metres or higher) storm resistant water reservoirs. The unit cost of the storage capacity is the sum of capital costs and operational and maintenance costs. Electricity costs to pump water are optional as water should, and could, be stored for several months. The costs arising for water storage are in the range of US$ 0.22 cents/m3 without electricity costs. Pérez Monteagudo (2000) estimated water prices at around US$ 2.64/m3 in stand points, US$ 7.92 /m3 for government offices, and US$ 13.2 /m3for cistern truck vehicles. These data need to be updated. As Turks and Caicos Islands continues to depend on tourism and Reverse Osmosis (RO) for obtaining fresh water, an unavoidable condition to maintaining and increasing gross domestic product(GDP) and population welfare, dependence on fossil fuels and vulnerability to increasingly volatile prices will constitute an important restriction. In this sense, mitigation supposes a synergy with adaptation. Energy demand and emissions of carbon dioxide (CO2) were also estimated using an emissions factor of 2. 6 tCO2/ tonne of oil equivalent (toe). Assuming a population of 33,000 inhabitants, primary energy demand was estimated for Turks and Caicos Islands at 110,000 toe with electricity demand of around 110 GWh. The business as usual (BAU), as well as the mitigation scenarios were estimated. The BAU scenario suggests that energy use should be supported by imported fossil fuels with important improvements in energy efficiency. The mitigation scenario explores the use of photovoltaic and concentrating solar power, and wind energy. As this is a preliminary study, the local potential and locations need to be identified to provide more relevant estimates. Macroeconomic assumptions are the same for both scenarios. By 2050, Turks and Caicos Islands could demand 60 m toe less than for the BAU scenario.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)