940 resultados para anaerobic wastewater treatment


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many of the existing methods for the treatment of rubber latex centrifugation eflluent are not only unsatisfactory in their efliciency to effect near perfect treatment in bringing down the COD to optimum level, but also time consuming and need a large landspace. As the rate of effluent generation is extremely high (20 litres for kilogram of rubber) there is a need for development of efficient system,capable of rapid reduction of COD and BOD. Though the organic load of the rubber efiluent is very high, it does not contain much processed chemicals and therefore it can be considered as a ‘biological eflluent’. Further, the ratio of the Chemical Oxygen Demand to Biological Oxygen Demand (COD/BOD) of this effluent remain almost as a constant value. According to Montgomery (1967), estimation of BOD is not ideally suited for studies on process design, treatability, control of treatment plants, setting standards for treated effluents and assessing the effect of polluting discharges on the oxygen resources of receiving waters. Hence in the present study COD was measured to determine the impact of treatment system on the effluent. In the present study, attempts were made to evaluate the efficiencies of certain methods such as packed bed reactor using immobilized microbial cells, rotating biological contactor (RBC) and activated sludge process, for rapid and efficient treatment of natural rubber latex centrifugation effluent. In addition, studies were also carn'ed out to develop a suitable bioprocess for the coagulation of skim latex, as an alternative to the presently used acid coagulation process towards reducing the pollution load, besides recovering quality rubber

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solid waste generation is a natural consequence of human activity and is increasing along with population growth, urbanization and industrialization. Improper disposal of the huge amount of solid waste seriously affects the environment and contributes to climate change by the release of greenhouse gases. Practicing anaerobic digestion (AD) for the organic fraction of municipal solid waste (OFMSW) can reduce emissions to environment and thereby alleviate the environmental problems together with production of biogas, an energy source, and digestate, a soil amendment. The amenability of substrate for biogasification varies from substrate to substrate and different environmental and operating conditions such as pH, temperature, type and quality of substrate, mixing, retention time etc. Therefore, the purpose of this research work is to develop feasible semi-dry anaerobic digestion process for the treatment of OFMSW from Kerala, India for potential energy recovery and sustainable waste management. This study was carried out in three phases in order to reach the research purpose. In the first phase, batch study of anaerobic digestion of OFMSW was carried out for 100 days at 32°C (mesophilic digestion) for varying substrate concentrations. The aim of this study was to obtain the optimal conditions for biogas production using response surface methodology (RSM). The parameters studied were initial pH, substrate concentration and total organic carbon (TOC). The experimental results showed that the linear model terms of initial pH and substrate concentration and the quadratic model terms of the substrate concentration and TOC had significant individual effect (p < 0.05) on biogas yield. However, there was no interactive effect between these variables (p > 0.05). The optimum conditions for maximizing the biogas yield were a substrate concentration of 99 g/l, an initial pH of 6.5 and TOC of 20.32 g/l. AD of OFMSW with optimized substrate concentration of 99 g/l [Total Solid (TS)-10.5%] is a semi-dry digestion system .Under the optimized condition, the maximum biogas yield was 53.4 L/kg VS (volatile solid).. In the second phase, semi-dry anaerobic digestion of organic solid wastes was conducted for 45 days in a lab-scale batch experiment for substrate concentration of 100 g/l (TS-11.2%) for investigating the start-up performances under thermophilic condition (50°C). The performance of the reactor was evaluated by measuring the daily biogas production and calculating the degradation of total solids and the total volatile solids. The biogas yield at the end of the digestion was 52.9 L/kg VS for the substrate concentration of 100 g/l. About 66.7% of volatile solid degradation was obtained during the digestion. A first order model based on the availability of substrate as the limiting factor was used to perform the kinetic studies of batch anaerobic digestion system. The value of reaction rate constant, k, obtained was 0.0249 day-1. A laboratory bench scale reactor with a capacity of 36.8 litres was designed and fabricated to carry out the continuous anaerobic digestion of OFMSW in the third phase. The purpose of this study was to evaluate the performance of the digester at total solid concentration of 12% (semi-dry) under mesophlic condition (32°C). The digester was operated with different organic loading rates (OLRs) and constant retention time. The performance of the reactor was evaluated using parameters such as pH, volatile fatty acid (VFA), alkalinity, chemical oxygen demand (COD), TOC and ammonia-N as well as biogas yield. During the reactor’s start-up period, the process is stable and there is no inhibition occurred and the average biogas production was 14.7 L/day. The reactor was fed in continuous mode with different OLRs (3.1,4.2 and 5.65 kg VS/m3/d) at constant retention time of 30 days. The highest volatile solid degradation of 65.9%, with specific biogas production of 368 L/kg VS fed was achieved with OLR of 3.1 kg VS/m3/d. Modelling and simulation of anaerobic digestion of OFMSW in continuous operation is done using adapted Anaerobic Digestion Model No 1 (ADM1).The proposed model, which has 34 dynamic state variables, considers both biochemical and physicochemical processes and contains several inhibition factors including three gas components. The number of processes considered is 28. The model is implemented in Matlab® version 7.11.0.584(R2010b). The model based on adapted ADM1 was tested to simulate the behaviour of a bioreactor for the mesophilic anaerobic digestion of OFMSW at OLR of 3.1 kg VS/m3/d. ADM1 showed acceptable simulating results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The term ‘water pollution’ broadly refers to the contamination of water and water bodies (e.g. lakes, rivers, oceans, groundwater etc). Water pollution occurs when pollutants are discharged directly or indirectly into water bodies without adequate treatment to remove the harmful contaminants. This affects not only the plants and organisms living in these bodies of water but also the entire natural biological communities and the biodiversity.Advanced Oxidation Processes (AOPs) have been tested as environment-friendly techniques for the treatment of contaminated water, in view of their ability to convert pollutants into harmless end products. These techniques refer to a set of treatment procedures designed to remove organic or inorganic contaminants in wastewater by oxidation. The contaminants are oxidized by different reagents such as air, oxygen, ozone, and hydrogen peroxide which are introduced in precise, preprogrammed dosages, sequences and combinations under appropriate conditions. The procedure when combined with light in presence of catalyst is known as photocatalysis. When ultrasound (US) is used as the energy source, the process is referred as sonication. Sonication in presence of catalyst is referred as sonocatalysis. Of late, combination of light and sound as energy sources has been tested for the decontamination of wastewater in the presence of suitable catalyst. In this case, the process is referred as sonophotocatalysis. These AOPs are specially advantageous in pollution control and waste water treatment because unlike many other technologies, they do not just transfer the pollutant from one phase to another but completely degrade them into innocuous substances such as CO2 and H2O.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis results from the collaborative projects between the LEQUIA-UdG group and Cespa (a company in charge of several landfill sites in Spain). The aim of the work was the development of a suitable alternative treatment for nitrogen removal from mature landfill leachates. The thesis presents the application of the anammox (anaerobic ammonium oxidation process) process to treat ammonium rich leachates as the second step of the PANAMMOX® process. The work deals with preliminary studies about the characteristics of the anammox process in a SBR, with special focus on the response of the biomass to nitrite exposure. The application of the anammox process with leachate was first studied in a lab-scale reactor, to test the effect of the leachate matrix on anammox biomass and its progressive adaptation. Finally, a start-up strategy is developed and applied for the successful start-up of a 400L anammox SBR in less than 6 months.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phenotypic and phylogenetic studies were performed on three isolates of an unknown Gram-negative, facultatively anaerobic, non-motile, yellow-pigmented, rod-shaped organism isolated from raw sewage. 16S rRNA gene sequence analysis indicated that these strains were members of the Bergeyella-Chryseobacterium-Riemerella branch of the family Flavobacteriaceae. The unknown bacterium was readily distinguished from reference strains by 16S rRNA gene sequencing and biochemical tests. The organism contained menaquinone MK-6 as the predominant respiratory quinone and had a DNA G + C content of 31 mol%. A most probable number-PCR approach was developed to detect, and estimate the numbers of, this organism. Untreated wastewater from one plant yielded an estimated count of 1.4 x 10(5) cells ml(-1), and untreated wastewater from a second plant yielded an estimated count of 1.4 x 10(4) cells ml(-1). Signal was not detected from treated effluent or from human stool specimens. On the basis of the results of the study presented, it is proposed that the unknown bacterium be classified in a novel genus Cloacibacterium, as Cloacibacterium normanense gen. nov., sp. nov., which is also the type species. The type strain of Cloacibacterium normanense is strain NRS1(T) (=CCUG 46293(T)=CIP 108613(T) =ATCC BAA-825(T) = DSM 15886(T)).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aimed at evaluating the effect of increasing organic loading rates and of enzyme pretreatment on the stability and efficiency of a hybrid upflow anaerobic sludge blanket reactor (UASBh) treating dairy effluent. The UASBh was submitted to the following average organic loading rates (OLR) 0.98 Kg.m(-3).d(-1), 4.58 Kg.m(-3).d(-1), 8.89 Kg.m(-3).d(-1) and 15.73 Kg.m(-3).d(-1), and with the higher value, the reactor was fed with effluent with and without an enzymatic pretreatment to hydrolyze fats. The hydraulic detention time was 24 h, and the temperature was 30 +/- 2 degrees C. The reactor was equipped with a superior foam bed and showed good efficiency and stability until an OLR of 8.89 Kg.m(-3).d(-1). The foam bed was efficient for solid retention and residual volatile acid concentration consumption. The enzymatic pretreatment did not contribute to the process stability, propitiating loss in both biomass and system efficiency. Specific methanogenic activity tests indicated the presence of inhibition after the sludge had been submitted to the pretreated effluent It was concluded that continuous exposure to the hydrolysis products or to the enzyme caused a dramatic drop in the efficiency and stability of the process, and the single exposure of the biomass to this condition did not inhibit methane formation. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Basic oxygen furnace (BOF) slag media were studied as a potential treatment material in on-site sanitation systems. Batch and column studies were conducted to evaluate attenuation of the bacteriophage PR772 and 0.190 mu m diameter microspheres by BOF media, and to delineate the relative contributions of two principle processes of virus attenuation: inactivation and attachment. In the batch studies, conducted at 4 degrees C, substantial inactivation of PR772 did not occur in the pH 7.6 and 9.5 suspensions. At pH 11.4, bimodal inactivation of PR772 was observed, at an initial rate of 2.1 log C/C(0) day(-1) for the first two days, followed by a much slower rate of 0.124 log C/C(0) day(-1) over the following 10 days. Two column studies were conducted at 4 degrees C at a flow rate of 1 pore volume day(-1) using two slag sources (Stelco, Ontario; Tubarao, Brazil) combined with sand and pea gravel. In both column experiments, the effluent microsphere concentration approached input concentrations over time (reductions of 0.1-0.2 log C/C(0)), suggesting attachment processes for microspheres were negligible. Removal of PR772 virus was more pronounced both during the early stages of the experiments, but also after longer transport times (0.5-1.0 log C/C(0)). PR772 reduction appeared to be primarily as a result of virus inactivation in response to the elevated pH conditions generated by the BOF mixture (10.6-11.4). On-site sanitation systems using BOF media should be designed to maintain sufficient contact time between the BOF media and the wastewater to allow sufficient residence time of pathogens at elevated pH conditions. (C) 2009 Published by Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study, photo-assisted electrochemical degradation of real textile wastewater was performed. Degradation assays were performed at constant current (40 mA cm(-2)) in a combined electro/photochemical flow-cell using a Ti/Ru(0.3)Ti(0.7)O(2) DSA(R) type electrode. The results show that the method is capable of removing color and chemical oxygen demand (COD) from the effluent. Additionally, the effect of initial pH and type of supporting electrolyte (Na(2)SO(4) or NaCl) was investigated. The principal figures of merit used in this study were COD removal and color removal (605 nm). The results show that up to 72% color and up to 59% COD removal in 120 min is possible under the operating conditions employed. Studies of the phytotoxicity of the wastewater before and after the photo-assisted degradation assays are also presented and the results demonstrate that the toxicity of the effluent is dependent on the length of electrolysis time and the treatment procedure employed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigates a new treatment system of wastewater by anaerobic and aerobic biological filters for nitrogen modification. The main objective of this study was evaluate, on a pilot scale, quantitatively and qualitatively the bacterian nitrifying community in a experimental sewage treatment system made by aerobics biological filters in series, in search of figure out the dynamic of nitrogen modification process. It was collected and laboratorial analysed microbiologically, regarding NMP of Nitrosomonas e Nitrobacter, and physical-chemically considering nitrogen sequence. We conclude that: the association in aerobic biological filters under nutrition controlled conditions and oxygen level allows the appearance of bacterian community responsible for the nitrogen modification; the method used, despite its limitations, provided the selection of autotrophic nitrifying microorganisms, allowing the identification of Nitrosomonas and Nitrobacter; the flow direction tested in the experimental unit did not affect the nitrifying bacterial community, certainly because they were kept drowned and did not occur flow speed that could breake the formed biomass; the nitrification process happened in aerated biological filters in all phases of the research, comproved by microbiological tests; in the third phase of the research the increase of the oxygen rate was significant for the nitrificant bacterian community in the aerate biological filters, allowing its growth, occurring relation between the efficiency of nitrification system and the quantity of organisms responsible for this process; the conduit used in aerated biological filters showed satisfactory performance support material to the nitrifying bacteria development

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The improper disposal of nitrogen in receiving water courses causes problems such as toxicity to living beings through the consumption of oxygen to meet the nitrogen demand, eutrophication and nitrate contamination of aquifers. For this reason it is often necessary to be carried out complementary treatment of wastewater to eliminate or reduce the concentration of this compound in the wastewater. The objective of this study is to evaluate the biological removal of nitrogen compounds using submerged aerated and anoxic filters as post-treatment of an anaerobic system, with low cost and innovative technology, which in previous studies has shown high removal efficiency of organic matter and great potential biological nitrogen compounds removal. The simple design with perforated hoses for air distribution and filling with plastic parts proved to be very efficient in relation to organic matter removal and nitrification. The system presented, in the best stage, efficiency in converting ammonia to nitrate by 71%, and produced a final effluent concentration below 10 mg / L of NH3-N. In addition, carbon concentration was removed by 77%, producing final effluent with 24 mg/L COD. However, denitrification in anoxic filter was not effective even with the addition of an external carbon source. There was a reduction of up to 56% of nitrogen caused by the process of simultaneous nitrification and denitrification (SND). The high voids space presented by this type of support material coupled with direct aeration of the sludge, allows the respiration of biomass retained between the endogenous phase, increased cell retention time and sludge retention capacity, producing a final effluent with turbidity less than 5 UT and total suspended solids around 5.0 mg/L

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)