991 resultados para adherent cells


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Copper(II) complexes Cu(satp)(L)] (1-3) of a Schiff base thiolate (salicylidene-2-aminothiophenol, H(2)satP) and phenanthroline bases (L), viz. 1,10-phenanthroline (phen in 1), dipyrido3,2-d:2',3'-f]quinoxaline (dpq in 2) and dipyrido3,2-a:2',3'-c]phenazine (dppz in 3), were prepared, characterized and their anaerobic DNA photocleavage activity and hypoxic photocytotoxicity studied. The redox active complexes show the Cu(II)-Cu(I) couple near -0.5 V for 1 and near 0.0 V vs. SCE (saturated calomel electrode) for 2 and 3. The one-electron paramagnetic complexes (similar to 1.85 mu(B)) are avid DNA binders giving K(b) values within 1.0 x 10(5) - 8.0 x 10(5) M(-1). Thermal melting and viscosity data along with molecular docking calculations suggest DNA groove and/or partial intercalative binding of the complexes. The complexes show anaerobic DNA cleavage activity in red light under argon via type-I pathway, while DNA photocleavage in air proceeds via hydroxyl radical pathway. The DFT (density functional theory) calculations reveal a thyil radical pathway for the anaerobic DNA photocleavage activity and suggest the possibility of generation of a transient copper(I) species due to bond breakage between the copper and sulfur to generate the thyil radical. An oxidation of the copper(I) species is likely by oxygen in an aerobic medium or by the buffer medium in an anaerobic condition. Complex 3 exhibits significant photocytotoxicity in HeLa cells (IC(50) = 8.3(+/- 1.0) mu M) in visible light, while showing lower dark toxicity (IC(50) = 17.2(+/- 1.0) mu M). A significant reduction in the dark toxicity is observed under hypoxic cellular conditions (IC(50) = 30.0(+/- 1.0) mu M in dark), while retaining its photocytotoxicity (IC(50) = 8.0(+/- 1.0) mu M). (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metallic Ru has been found to coexist separately with CaO, RuO2, and the interoxide phases, Ca2RuO4, Ca3Ru2O7, and CaRuO3, present along the pseudobinary system CaO-RuO2. The standard Gibbs energies of formation (Df((ox))G(o)) of the three calcium ruthenates from their component oxides have been measured in the temperature range 925-1350 K using solid-state cells with yttria-stabilized zirconia as the electrolyte and Ru+RuO2 as the reference electrode. The standard Gibbs energies of formation (Deltaf((ox))G(o)) of the compounds can be represented by Ca2RuO4:Deltaf((ox))G(o)/J mol(-1)=-38,340-6.611 T (+/-120), Ca3Ru2O7 : Df((ox))G(o)/J mol(-1)=-75,910-11.26 T (+/-180), and CaRuO3 : Deltaf((ox))G(o)/J mol(-1)=-35,480-3.844 T(+/-70). The data for Ca2RuO4 corresponds to the stoichiometric composition, which has an orthorhombic structure, space group Pbca, with short c axis ("S'' form). The structural features of the ternary oxides responsible for their mild entropy stabilization are discussed. A three-dimensional oxygen potential diagram for the system Ca-Ru-O is developed as a function of composition and temperature from the results obtained. Using the Neumann-Kopp rule to estimate the heat capacity of the ternary oxides relative to their constituent binary oxides, the standard enthalpies of formation of the three calcium ruthenates from the elements and their standard entropies at 298.15 K are evaluated. (C) 2003 The Electrochemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a real-time haptics-aided injection technique for biological cells using miniature compliant mechanisms. Our system consists of a haptic robot operated by a human hand, an XYZ stage for micro-positioning, a camera for image capture, and a polydimethylsiloxane (PDMS) miniature compliant device that serves the dual purpose of an injecting tool and a force-sensor. In contrast to existing haptics-based micromanipulation techniques where an external force sensor is used, we use visually captured displacements of the compliant mechanism to compute the applied and reaction forces. The human hand can feel the magnified manipulation force through the haptic device in real-time while the motion of the human hand is replicated on the mechanism side. The images are captured using a camera at the rate of 30 frames per second for extracting the displacement data. This is used to compute the forces at the rate of 30 Hz. The force computed in this manner is sent at the rate of 1000 Hz to ensure stable haptic interaction. The haptic cell-manipulation system was tested by injecting into a zebrafish egg cell after validating the technique at a size larger than that of the cell.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA intercalating molecules are promising anticancer agents. Polycyclic aromatic molecules such as ellipticine intercalate into double-stranded DNA and affect major physiological functions. In the present study, we have characterized two molecules with the same chemical backbone but different side chains, namely 8-methoxy pyrimido[4',5':4,5]thieno (2,3-b)quinoline-4(3H)-one (MPTQ) and 4-morpholino pyrimido[4',5':4,5]thieno(2,3-b)quinoline (morpho-PTQ) at the 8th and 4th position, respectively. Although both MPTQ and morpho-PTQ show similar biophysical properties with high DNA affinity, here we show that they differ in their biological activities. We find that MPTQ is many fold more potent than morpho-PTQ and is cytotoxic against different leukemic cell lines. IC(50) value of methoxy PTQ was estimated between 2-15 A mu M among the leukemic cells studied, while it was more than 200 A mu M when morpho-PTQ was used. Cell cycle analysis shows an increase in sub-G1 phase, without any particular cell cycle arrest. Annexin V staining in conjunction with comet assay and DNA fragmentation suggest that MPTQ induces cytotoxicity by activating apoptosis. Thus the observed low IC(50) value of MPTQ makes it a promising cancer chemotherapeutic agent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Efficiency of organic photovoltaic cells based on organic electron donor/organic electron acceptor junctions can be strongly improved when the transparent conductive Anode is coated with a Buffer Layer (ABL). Here, the effects of a metal (gold) or oxide (molybdenum oxide) ABL are reported, as a function of the Highest Occupied Molecular Orbital (HOMO) of different electron donors. The results indicate that a good matching between the work function of the anode and the highest occupied molecular orbital of the donor material is the major factor limiting the hole transfer efficiency. Indeed, gold is efficient as ABL only when the HOMO of the organic donor is close to its work function Phi(Au). Therefore we show that the MoO(3) oxide has a wider field of application as ABL than gold. (C) 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new class of bio-composite polymer electrolyte membranes comprising chitosan (CS) and certain biomolecules in particular, plant hormones such as 3-indole acetic acid (IAA), 4-chlorophenoxy acetic acid (CAA) and 1-naphthalene acetic acid (NAA) are explored to realize proton-conducting bio-composite membranes for application in direct methanol fuel cells (DMFCs). The sorption capability, proton conductivity and ion-exchange capacity of the membranes are characterized in conjunction with their thermal and mechanical behaviour. A novel approach to measure the permeability of the membranes to both water and methanol is also reported, employing NMR imaging and volume localized NMR spectroscopy, using a two compartment permeability cell. A DMFC using CS-IAA composite membrane, operating with 2M aqueous methanol and air at 70 degrees C delivers a peak power density of 25 mW/cm(2) at a load current density of 150 mA/cm(2). The study opens up the use of bio-compatible membranes in polymer-electrolyte-membrane fuel cells. (C) 2011 The Electrochemical Society. [DOI: 10.1149/2.030111jes] All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies in drug development have shown that curcumin can be a good competent due to its improved anticancer, antioxidant, anti-proliferative, and anti-inflammatory activities. A detailed real time characterization of drug (curcumin)-cell interaction is carried out in human nasopharyngeal cancer cells using atomic force microscopy. Nanocurcumin shows an enhanced uptake over micron sized drugs attributed to the receptor mediated route. Cell membrane stiffness plays a critical role in the drug endocytosis in nasopharyngeal cancer cells. (C) 2011 American Institute of Physics. [doi:10.1063/1.3653388]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The standard Gibbs energies of formation of SrIrO3, Sr2IrO4 and Sr4IrO6 have been determined in the temperature range from 975 to 1400 K using solid-state cells with (Y2O3) ZrO2 as the electrolyte and pure oxygen gas at a pressure of 0.1 MPa as the reference electrode. For the design of appropriate working electrodes, phase relations in the ternary system Sr–Ir–O were investigated at 1350 K. The only stable oxide detected along the binary Ir–O was IrO2. Three ternary oxides, SrIrO3, Sr2IrO4 and Sr4IrO6, compositions of which fall on the join SrO–IrO2, were found to be stable. Each of the oxides coexisted with pure metal Ir. Therefore, three working electrodes were prepared consisting of mixtures of Ir+SrO+Sr4IrO6, Ir+Sr4IrO6+Sr2IrO4, and Ir+Sr2IrO4+SrIrO3. These mixtures unambiguously define unique oxygen chemical potentials under isothermal and isobaric conditions. Used for the measurements was a novel apparatus, in which a buffer electrode was introduced between reference and working electrodes to absorb the electrochemical flux of oxygen through the solid electrolyte. The buffer electrode prevented polarization of the measuring electrode and ensured accurate data. The standard Gibbs energies of formation of the compounds, obtained from the emf of the cells, can be represented by the following equations: View the MathML sourcem View the MathML source View the MathML source where Δf (ox)Go represents the standard Gibbs energy of formation of the ternary compound from its component binary oxides SrO and IrO2. Based on the thermodynamic information, chemical potential diagrams for the system Sr–Ir–O were developed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new design for the solid-state cell incorporating a buffer electrode for high-temperature thermodynamic measurements is presented. The function of the buffer electrode, placed between the reference and working electrodes, is to absorb the electrochemical flux of the mobile species through the solid electrolyte caused by trace electronic conductivity. The buffer electrode prevents polarization of the measuring electrode and ensures accurate data. The application of this novel design and its advantages are demonstrated by measurement of the standard Gibbs energies of formation of Nd6Ir2O13 (low-temperature form) and Nd2Ir2O7 in the temperature range from 975 to 1450 K. Yttria-stabilized zirconia is used as the solid electrolyte and pure oxygen gas at a pressure of 0.1 MPa as the reference electrode. For the design of appropriate working electrodes, phase relations in the ternary system NdIrO were investigated at 1350 K. The two ternary oxides, Nd6Ir2O13 and Nd2Ir2O7, compositions of which fall on the join Nd2O3IrO2, were found to coexist with pure metal Ir. Therefore, two working electrodes were prepared consisting of mixtures of Ir+Nd2O3+Nd6Ir2O13 and Ir+Nd6Ir2O13+ Nd2Ir2O7. These mixtures unambiguously define unique oxygen chemical potentials under isothermal and isobaric conditions. The standard Gibbs energies of formation (ΔG°f (ox)) of the compounds from their component binary oxides Nd2O3 and IrO2, obtained from the emf of the cells, can be represented by the equations:View the MathML source View the MathML source Based on the thermodynamic information, chemical potential diagrams for the system NdIrO are developed.