903 resultados para acetic acid ester
Resumo:
Savannah is the second biome in biodiversity in Brazil, presenting great vegetation endemism. Dipteryx alata Vog. (Fabaceae), native from this biome, is an economically important species, with an incipient market due to the lack of commercial plantations. This highlights the need to develop and provide the basis for the domestication of this species. Thus, this study determined the best conditions for in vitro establishment, multiplication, elongation and rooting of stem tips of D. alata plantlets grown vitro. Two culture media (MS and WPM) were evaluated in different salt concentrations (25, 50, 75 and 100%) for plantlet establishment. Four concentrations of 6– Benzylaminopurine (BAP) (0, 1, 2, 3 and 4 mg L-1) amended with 0.25 mg L-1 naphthalene-acetic acid (NAA) were studied for multiplication. Simultaneous elongation and rooting were studied with four concentrations of NAA (0, 1, 2, 3 and 4 mg L-1) together with 0.5 mg L-1 IBA. The variables analyzed were: shoot length (CPA), root length (CP), fresh matter (MF), dry matter (MSC), stem diameter (DC) and number of leaves (NF), 120 days after inoculation, with the exception of number of shoots, which was evaluated in the multiplication stage only. The medium MS at the original salt concentration (100%) was effective for the in vitro establishment of E. alata, resulting in greater root length (27.65 cm) and number of leaves per plantlet (26.0). The concentration of 4 mg L-1 BAP was the best one for multiplication; however, greater concentrations can boost multiplication. The effect of NAA and IBA were noticeable on in vitro elongation and rooting, with best CPA (3.14 cm) and CR (15.84 cm). Therefore, it is possible to state that the medium MS increases the success probability of in vitro establishment of stem tips of Dipteryx alata. NAA concentrations below 3 mg L-1 were favorable for in vitro development of the species, with essential characteristics for acclimatization success|.
Resumo:
Peer reviewed
Resumo:
The impact of alkyl chain length on the esterification of C2–C16 organic acids with C1–C4 alcohols has been systematically investigated over bulk and SBA-15 supported sulfated zirconias (SZs). Rates of catalytic esterification for methanol with acetic acid are directly proportional to the sulfur content for both SZ and SZ/SBA-15, with the high dispersion of SZ achievable in conformal coatings over mesoporous SBA-15 confering significant rate-enhancements. Esterification over the most active 0.24 mmol gcat−1 bulk SZ and 0.29 mmol gcat−1 SZ/SBA-15 materials was inversely proportional to the alkyl chain length of alcohol and acid reactants; being most sensitive to changes from methanol to ethanol and acetic to hexanoic acids respectively. Kinetic analyses reveal that these alkyl chain dependencies are in excellent accord with the Taft relationship for polar and steric effects in aliphatic systems and the enthalpy of alcohol adsorption, implicating a Langmuir–Hinshelwood mechanism. The first continuous production of methyl propionate over a SZ fixed-bed is also demonstrated.
Resumo:
Chitosan gel films were successfully obtained by evaporation cast from chitosan solutions in aqueous acidic solutions of organic acids (lactic and acetic acid) as gel film bandages, with a range of additives that directly influence film morphology and porosity. We show that the structure and composition of a wide range of 128 thin gel films, is correlated to the antimicrobial properties, their biocompatibility and resistance to biodegradation. Infrared spectroscopy and solid-state 13C nuclear magnetic resonance spectroscopy was used to correlate film molecular structure and composition to good antimicrobial properties against 10 of the most prevalent Gram positive and Gram negative bacteria. Chitosan gel films reduce the number of colonies after 24 h of incubation by factors of ∼105–107 CFU/mL, compared with controls. For each of these films, the structure and preparation condition has a direct relationship to antimicrobial activity and effectiveness. These gel film bandages also show excellent stability against biodegradation with lysozyme under physiological conditions (5% weight loss over a period of 1 month, 2% in the first week), allowing use during the entire healing process. These chitosan thin films and subsequent derivatives hold potential as low-cost, dissolvable bandages, or second skin, with antimicrobial properties that prohibit the most relevant intrahospital bacteria that infest burn injuries.
Resumo:
This thesis details the top-down fabrication of nanostructures on Si and Ge substrates by electron beam lithography (EBL). Various polymeric resist materials were used to create nanopatterns by EBL and Chapter 1 discusses the development characteristics of these resists. Chapter 3 describes the processing parameters, resolution and topographical and structural changes of a new EBL resist known as ‘SML’. A comparison between SML and the standard resists PMMA and ZEP520A was undertaken to determine the suitability of SML as an EBL resist. It was established that SML is capable of high-resolution patterning and showed good pattern transfer capabilities. Germanium is a desirable material for use in microelectronic applications due to a number of superior qualities over silicon. EBL patterning of Ge with high-resolution hydrogen silsesquioxane (HSQ) resist is however difficult due to the presence of native surface oxides. Thus, to combat this problem a new technique for passivating Ge surfaces prior to EBL processes is detailed in Chapter 4. The surface passivation was carried out using simple acids like citric acid and acetic acid. The acids were gentle on the surface and enabled the formation of high-resolution arrays of Ge nanowires using HSQ resist. Chapter 5 details the directed self-assembly (DSA) of block copolymers (BCPs) on EBL patterned Si and, for the very first time, Ge surfaces. DSA of BCPs on template substrates is a promising technology for high volume and cost effective nanofabrication. The BCP employed for this study was poly (styrene-b-ethylene oxide) and the substrates were pre-defined by HSQ templates produced by EBL. The DSA technique resulted into pattern rectification (ordering in BCP) and in pattern multiplication within smaller areas.
Resumo:
An integrated, high-resolution chemostratigraphic (C, O and Sr isotopes) and magnetostratigraphic study through the upper Middle Cambrian - lowermost Ordovician shallow-marine carbonates of the northwestern margin of the Siberian Platform is reported. The interval was analysed at the Kulyumbe section, which is exposed along the Kulyumbe River: an eastern tributary of the Enisej River. It comprises the upper Ust'-Brus, Labaz, Orakta, Kulyumbe, Ujgur, and lower Iltyk formations and includes the Steptoean positive carbon isotopic excursion (SPICE) studied here in detail from upper Cambrian carbonates of the Siberian Platform for the first time. The peak of the excursion, showing d13C positive values as high as +4.6? and least-altered 87Sr/86Sr ratios of 0.70909, is reported herein from the Yurakhian Horizon of the Kulyumbe Formation. The stratigraphic position of the SPICE excursion does not support traditional correlation of the boundary between the Orakta and Labaz formations at Kulyumbe River with its supposedly equivalent level in Australia, Laurentia, South China, and Kazakhstan, where the Glyptagnostus stolidotus and G. reticulatus biozones are known to immediately precede the SPICE excursion and span the Middle-Upper Cambrian boundary. The Cambrian-Ordovician boundary is probably situated in the middle Nyajan Horizon of the Iltyk Formation, in which carbon isotope values show a local maximum below a decrease in the upper part of the Nyajan Horizon, attributed herein to the Tremadocian. A refined magnetic polarity sequence shows that the geomagnetic reversal frequency was very high during the Middle Cambrian at 5-10 reversals per Ma, assuming a total duration of ~10 Ma and up to 100 magnetic intervals in the Middle Cambrian. By contrast, the sequence attributed herein to the Upper Cambrian on chemostratigraphic grounds contains only 10-11 magnetic intervals. Preprint in Open Access hdl:10013/epic.30209.d001
Resumo:
Strontium isotopic compositions of acetic acid (HOAc) leachate fractions of eight manganese oxide deposits from the modern seafloor, and of twenty-one buried manganese nodules from Cretaceous to Recent sediments in DSDP/ODP cores were measured. ratios of HOAc leachates in all modern seafloor manganese oxides of various origins are identical with present seawater. The ratios of the HOAc leachates of buried nodules from DSDP/ODP cores are significantly lower than those of nodules from the modern seafloor and are mostly identical with coeval seawater values estimated from the age of associated sediments. It is suggested that the buried nodules in DSDP/ODP cores are not artifacts transported from the present seafloor during the drilling process, but are in situ fossil deposits from the past deep-sea floor during Cretaceous to Quaternary periods. The formation of deep-sea fossil nodules prior to the formation of Antarctic Bottom Water (AABW) indicates that the circulation of oxygenated deep seawaters have activately deposited manganese oxides since the Eocene Epoch, or earlier.
Resumo:
v. 46, n. 2, p. 149-158, apr./jun. 2016.
Resumo:
Ruthenium complexes have proved to exhibit antineoplastic activity related to the interaction of metal ion with DNA nucleobases. It is indeed of great interest to provide new insights on theses cutting-edge studies, such as the identification of distinct coordinative modes of DNA binding sites. During the investigation on the reaction between [(PPh3)3Ru(CO)(H)2], 1, and the Thymine Acetic Acid (THA) as model for nucleobases, we identified an unstable monohapto hydride acetate complex 2, which rapidly evolves into elusive intermediates whose nature was evidenced by NMR spectra and DFT calculations. We obtained crystals of [(PPh3)2Ru(CO)(k1-THA)(k2-THA)] 17, and [Ru(CO)(PPh3)2(k2-N,O)-[THA(A)];(k1-O)[THA(B)]2 18, phosphine ligands assuming cis conformation. The thesis deals on the analogue reactions of 1 with acetic acid by varying different parameters and operating conditions. The reaction yields to the hydride dihapto-acetate [(PPh3)2RuH(CO)(k2-Ac)] 8 through the related meridian monohapto, by releasing of phosphine ligand. However, the reaction yields a mixture of compounds, in which the dihapto hydride complex 8 is prevailing in any cases and does not provide any disclosure for the proposed mechanistic aspects. The reaction with two equivalents of acetic acid, affords the complex [(PPh3)2Ru(CO)(k1-Ac)(k2-Ac)] 11, exhibiting mutual trans:cis locations in 2:1 ratio for the phosphine. Such evidence agrees with the results obtained DFT calculations in vacuo, whereas it is in contrast with those obtained with the THA. Therefore we can inferred that the products obtained from the latter reaction is intermolecularly ruled by the hydrogen binding interactions between the functions [-NH•••(O)C-] in the two coordinated thymine ligands.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Two novel strains of Gram-stain-negative, rod-shaped, obligately anaerobic, non-spore-forming, non-motile bacteria were isolated from the faeces of healthy human subjects. The strains, designated as 585-1T and 668, were characterized by mesophilic fermentative metabolism, production of d-lactic acid, succinic acid and acetic acid as end products of d-glucose fermentation, prevalence of C18 : 1 ω9, C18 : 1 ω9 aldehyde, C16 : 0 and C16 : 1 ω7c fatty acids, presence of glycine, glutamic acid, lysine, alanine and aspartic acid in the petidoglycan peptide moiety and lack of respiratory quinones. Whole genome sequencing revealed the DNA G+C content was 56.4–56.6 mol%. The complete 16S rRNA gene sequences of the two strains shared 91.7/91.6 % similarity with Anaerofilum pentosovorans FaeT, 91.3/91.2 % with Gemmiger formicilis ATCC 27749T and 88.9/88.8 % with Faecalibacterium prausnitzii ATCC 27768T. On the basis of chemotaxonomic and genomic properties it was concluded that the strains represent a novel species in a new genus within the family Ruminococcaceae , for which the name Ruthenibacterium lactatiformans gen. nov., sp. nov. is proposed. The type strain of Ruthenibacterium lactatiformans is 585-1T (=DSM 100348T=VKM B-2901T).
Resumo:
Dissertação composta por 02 artigos.
Resumo:
Lignocellulosicwaste from the pineapple production is a raw material useful for the xylose production by hydrolysis and it can be converted to xylitol. The objective of this work was to study the hydrolysis of pineapple peel with sulfuric acid at variable concentration (2-6%), reaction time (0-350 min) and temperature at 98 ˚C. The concentration of xylose, glucose and degradation products as acetic acid and furfural was determined. Optimal conditions found for hydrolysis were 6% H2SO4 at 98 ˚C for 83 min which yield was 26,9 g xylose/L, 2,61 g glucose/L, 7,71 g acetic acid/L and 0,29 g furfural/L.
Resumo:
Vascular phloem loading has long been recognized as an essential step in the establishment of a systemic virus infection. Yet little is known about this process and the mechanisms that control it. In this study, an interaction between the replication protein of Tobacco mosaic virus (TMV) and phloem specific auxin/indole acetic acid (Aux/IAA) transcriptional regulators was found to modulate virus phloem loading. Promoter expression studies show TMV 126/183 kDa interacting Aux/IAAs predominantly express and accumulate within the nuclei of phloem companion cells (CC). Furthermore, CC Aux/IAA nuclear localization is disrupted upon infection with an interacting virus but not during infection with a non-interacting virus. In situ analysis of virus spread shows the inability of TMV variants to disrupt Aux/IAA CC nuclear localization correlates with a reduced ability to load into the vascular tissue. Subsequent systemic movement assays also demonstrate that a virus capable of disrupting Aux/IAA localization is significantly more competitive at systemic movement than a non-interacting virus. Similarly, CC expression and over-accumulation of a degradation-resistant-interacting Aux/IAA protein was found to selectively inhibit TMV accumulation and phloem loading. Transcriptional expression studies demonstrate a role for interacting Aux/IAA proteins in the regulation of salicylic acid and jasmonic acid dependent host defense responses as well as virus specific movement factors including pectin methylesterase that are involved in regulating plasmodesmata size exclusion limits and promoting virus cell-to-cell movement. Further characterization of the phloem environment was done using two phloem specific promoters (pSUC2 and pSULTR2;2) to generate epitope-tagged polysomal-RNA complexes. Immuno-purification using the epitope tag allowed us to obtain mRNAs bound to polysomes (the translatome) specifically in phloem tissue. We found the phloem translatome is uniquely altered during TMV infection with 90% and 88% of genes down regulated in the pSUC2 and pSULTR2;2 phloem translatomes, compared to 31% of genes down regulated in the whole plant p35S translatome. Transcripts down regulated in phloem include genes involved in callose deposition at plasmodesmata, host defense responses, and RNA silencing. Combined, these findings indicate TMV reprograms gene expression within the vascular phloem as a means to enhance phloem loading and systemic spread.
Resumo:
A micro gas sensor has been developed by our group for the detection of organo-phosphate vapors using an aqueous oxime solution. The analyte diffuses from the high flow rate gas stream through a porous membrane to the low flow rate aqueous phase. It reacts with the oxime PBO (1-Phenyl-1,2,3,-butanetrione 2-oxime) to produce cyanide ions, which are then detected electrochemically from the change in solution potential. Previous work on this oxime based electrochemistry indicated that the optimal buffer pH for the aqueous solution was approximately 10. A basic environment is needed for the oxime anion to form and the detection reaction to take place. At this specific pH, the potential response of the sensor to an analyte (such as acetic anhydride) is maximized. However, sensor response slowly decreases as the aqueous oxime solution ages, by as much as 80% in first 24 hours. The decrease in sensor response is due to cyanide which is produced during the oxime degradation process, as evidenced by the cyanide selective electrode. Solid phase micro-extraction carried out on the oxime solution found several other possible degradation products, including acetic acid, N-hydroxy benzamide, benzoic acid, benzoyl cyanide, 1-Phenyl 1,3-butadione, 2-isonitrosoacetophenone and an imine derived from the oxime. It was concluded that degradation occurred through nucleophilic attack by a hydroxide or oxime anion to produce cyanide, as well as a nitrogen atom rearrangement similar to Beckmann rearrangement. The stability of the oxime in organic solvents is most likely due to the lack of water, and specifically hydroxide ions. The reaction between oxime and organo-phosphate to produce cyanide ions requires hydroxide ions, and therefore pure organic solvents are not compatible with the current micro-sensor electrochemistry. By combining a concentrated organic oxime solution with the basic aqueous buffer just prior to being used in the detection process, oxime degradation can be avoided while preserving the original electrochemical detection scheme. Based on beaker cell experiments with selective cyanide sensitive electrodes, ethanol was chosen as the best organic solvent due to its stabilizing effect on the oxime, minimal interference with the aqueous electrochemistry, and compatibility with the current microsensor material (PMMA). Further studies showed that ethanol had a small effect on micro-sensor performance by reducing the rate of cyanide production and decreasing the overall response time. To avoid incomplete mixing of the aqueous and organic solutions, they were pre-mixed externally at a 10:1 ratio, respectively. To adapt the microsensor design to allow for mixing to take place within the device, a small serpentine channel component was fabricated with the same dimensions and material as the original sensor. This allowed for seamless integration of the microsensor with the serpentine mixing channel. Mixing in the serpentine microchannel takes place via diffusion. Both detector potential response and diffusional mixing improve with increased liquid residence time, and thus decreased liquid flowrate. Micromixer performance was studies at a 10:1 aqueous buffer to organic solution flow rate ratio, for a total rate of 5.5 μL/min. It was found that the sensor response utilizing the integrated micromixer was nearly identical to the response when the solutions were premixed and fed at the same rate.