965 resultados para accumulative roll bonding


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poster presented at the “From Basic Sciences to Clinical Research” - First International Congress of CiiEM. Caparica, Portugal, 27-28 November 2015

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In geophysics there are several steps in the study of the Earth, one of them is the processing of seismic records. These records are obtained through observations made on the earth surface and are useful for information about the structure and composition of the inaccessible parts in great depths. Most of the tools and techniques developed for such studies has been applied in academic projects. The big problem is that the seismic processing power unwanted, recorded by receivers that do not bring any kind of information related to the reflectors can mask the information and/or generate erroneous information from the subsurface. This energy is known as unwanted seismic noise. To reduce the noise and improve a signal indicating a reflection, without losing desirable signals is sometimes a problem of difficult solution. The project aims to get rid of the ground roll noise, which shows a pattern characterized by low frequency, low rate of decay, low velocity and high amplituds. The Karhunen-Loève Transform is a great tool for identification of patterns based on the eigenvalues and eigenvectors. Together with the Karhunen-Loève Transform we will be using the Singular Value Decomposition, since it is a great mathematical technique for manipulating data

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The emotional bond that a mother feels towards her baby is critical to social, emotional and cognitive development. Maternal health and wellbeing through pregnancy and antenatal bonding also play a key role in determining bonding postnatally, but the extent to which these relationships may be disrupted by poor mental health or substance use is unclear. This study aimed to examine the extent to which mother-fetal bonding, substance use and mental health through pregnancy predicted postnatal mother-infant bonding at 8 weeks. Participants were 372 women recruited from three metropolitan hospitals in Australia. Data was collected during trimesters one, two and three of pregnancy and 8 weeks postnatal using the Maternal Antenatal Attachment Scale (MAAS), Maternal Postnatal Attachment Scale (MPAS), the Edinburgh Antenatal and Postnatal Depression Scale (EPDS), the Depression and Anxiety Scales (DASS-21), frequency and quantity of substance use (caffeine, alcohol and tobacco) as well as a range of demographic and postnatal information. Higher antenatal bonding predicted higher postnatal bonding at all pregnancy time-points in a fully adjusted regression model. Maternal depressive symptoms in trimesters two and three and stress in trimester two were inversely related to poorer mother-infant bonding 8 weeks postnatally. This study extends previous work on the mother’s felt bond to her developing child by drawing on a large sample of women and documenting the pattern of this bond at three time points in pregnancy and at 8 weeks postnatally. Utilising multiple antenatal waves allowed precision in isolating the relationships in pregnancy and at key intervention points. Investigating methods to enhance bonding and intervene in pregnancy is needed. It is also important to assess maternal mental health through pregnancy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Forbidden disulfides are stressed disulfides found in recognisable protein contexts previously defined as structurally forbidden. The torsional strain of forbidden disulfides is typically higher than for structural disulfides, but not so high as to render them immediately susceptible to reduction under physionormal conditions. The meta-stability of forbidden disulfides makes them likely candidates as redox switches. Here we mined the Protein Data Bank for examples of the most common forbidden disulfide, the aCSDn. This is a canonical motif in which disulfide-bonded cysteine residues are positioned directly opposite each other on adjacent anti-parallel β-strands such that the backbone hydrogen bonded moieties are directed away from each other. We grouped these aCSDns into homologous clusters and performed an extensive physicochemical and informatic analysis of the examples found. We estimated their torsional energies using quantum chemical calculations and studied differences between the preferred conformations of the computational model and disulfides found in solved protein structures to understand the interaction between the forces imposed by the disulfide linkage and typical constraints of the surrounding β-sheet. In particular, we assessed the twisting, shearing and buckling of aCSDn-containing β-sheets, as well as the structural and energetic relaxation when hydrogen bonds in the motif are broken. We show the strong preference of aCSDns for the right-handed staple conformation likely arises from its compatibility with the twist, shear and Cα separation of canonical β-sheet. The disulfide can be accommodated with minimal distortion of the sheet, with almost all the strain present as torsional strain within the disulfide itself. For each aCSDn cluster, we summarise the structural and strain data, taxonomic conservation and any evidence of redox activity. aCSDns are known substrates of thioredoxin-like enzymes. This, together with their meta-stability, means they are ideally suited to biological switching roles and are likely to play important roles in the molecular pathways of oxidative stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Roll forming is a cost and energy efficient process for the manufacture of Ultra High Strength Steel (UHSS) structural and crash components in the automotive industry. The conventional roll forming process is limited to component having constant cross-section, while the recently deveoped Flexible Roll Forming (FRF) process allows the production of components in which the section varies over the length of the aprt; this permits optimization in terms of strength and weight. There has been an uptake in FRF in the heavy vehicle industry for the production of long and high strength structural parts, but passenger car bodies are more complex and generally parts require variations in width and also in depth. The widespread application of FRF in the automotive industy therefore requires the forming of components that have intricate variations in profile depth over the length of the part.
This work is a first comprehensive study of the FRF of high strength structural components with variable depth. For this, the FRF of an automotive bumper section is analyzed numerically using the commercial software package COPRA® FEA RF. A detailed analysis of the distribution and history of plastic strain in longitudinal, transcerse and thickness directions is performed and related to the shape defects observed in the proecss. The analysis shows that when forming variable depth components, zones of compressive longitudinal strain exist that lead to wrinkling defects. These can be reduced by applying additional flange contact during the operation. In general the current work suggests that the FRF of high strength components with variable depth is possible and can compete with other forming methods currently used in the automotive industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of ultra/advanced high strength steels (U/AHSS) has challenged traditional forming methods due to their higher strength and reduced formability. An alternative method is flexible roll forming, which allows the manufacture of sheet metal of high strength and limited ductility into complex and weight-optimized components. However, one major problem in flexible roll forming is the web-warping defect, which is the deviation in height of the web over the length of the profile. The authors’ previous work developed an analytical model to predict the magnitude of web-warping. That model was purely geometric and neglected the effect of material properties. This work develops an analytical solution for the prediction of web-warping that considers both geometric and material parameters. The model results were validated by comparison with numerical and experimental results. The impact of this new model will be the ability to provide a rapid initial design assessment before an intensive numerical analysis of flexible roll forming is conducted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the self-assembled microphase separated morphologies that are obtained in bulk, by the complexation of a semicrystalline poly(ε-caprolactone-dimethyl siloxane-ε-caprolactone) (PCL-PDMS-PCL) triblock copolymer and a homopolymer, poly(hydroxyether of bisphenol A) (PH) in tetrahydrofuran (THF). In these blends, microphase separation takes place due to the disparity in intermolecular interactions; specifically, the homopolymer interacts with PCL blocks through hydrogen bonding interactions. The crystallization, microphase separation and crystalline structures of a triblock copolymer/homopolymer blends were investigated. The phase behavior of the complexes was investigated using small-angle X-ray scattering and transmission electron microscopy. At low PH concentrations, PCL interacts relatively weakly with PH, whereas in complexes containing more than 50 wt% PH, the PCL block interacts significantly with PH, leading to the formation of composition-dependent nanostructures. SAXS and TEM results indicate that the lamellar morphology of neat PCL-PDMS-PCL triblock copolymer changes into disordered structures at 40-60 wt% PH. Spherical microdomains were obtained in the order of 40-50 nm in complexes with 80 wt% PH. At this concentration, the complexes show a completely homogenous phase of PH/PCL, with phase-separated spherical PDMS domains. The formation of these nanostructures and changes in morphology depends on the strength of hydrogen bonding between PH/PCL blocks and also the phase separated PDMS blocks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new route to prepare nanostructured thermosets by the utilization of intermolecular hydrogen-bonding interactions is demonstrated here. In this study, competitive hydrogen-bonding-induced microphase separation (CHIPS) in epoxy resin (ER) containing an amphiphilic block copolymer poly(ε-caprolactone)-block-poly(2-vinylpyridine) (PCL-b-P2VP) is investigated for the first time. The phase separation takes place due to the disparity in the hydrogen-bonding interactions in ER/P2VP and ER/PCL pairs leading to the formation of ordered nanostructures in the ER/block copolymer blends. SAXS and TEM results indicate that the hexagonally packed cylindrical morphology of neat PCL-b-P2VP block copolymer remains but becomes a core-shell structure at 10 wt % addition of ER, and changes to regular lamellae structures at 20-50 wt % then to disordered lamellae with 60 wt % ER. Wormlike structures are obtained in the blends with 70 wt % ER, followed by a completely homogeneous phase of ER/P2VP and ER/PCL. The formation of nanostructures and changes in morphologies depend on the relative strength of hydrogen-bonding interactions between each component block copolymer and the homopolymer. This versatile method to develop nanostructured thermosets, involving competitive hydrogen-bonding interactions, could be used for the fabrication of hierarchical and functional materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a previous paper, a simple model was developed to extend the application of the traditional flower pattern diagram as a design tool for roll forming. The position of a point on the strip as it passes through each set of rolls can be identified as a series of points in the two-dimensional flower pattern diagram. In three dimensions, these points will lie on a non-circular cylindrical surface having its axis parallel to the machine axis. Assuming that these points are joined by a smooth curve, the forming path of a point on the strip as it passes through the roll forming process can be obtained as a plane curve on the plane development of this surface. It was shown in previous work that the longitudinal membrane strain and, in certain cases, local curvature of the sheet are functions of the slope of this plane curve. In this work, the strains on both surfaces at the edge of a strip in the forming of a simple V-channel are measured using strain gauges. It is shown that near the point of contact with the rolls, the strains differ by nearly an order of magnitude from those determined from the simple model which assumes that the trajectory is a smooth curve. A modification of the forming path is obtained from the measured bending strains. Although the changes in displacement are small, the peak values of strain near the point of roll contact are large and a consequence of highly localised changes in the forming path as the strip passes over each roll. Measurement of this perturbation in the forming path is difficult as the region is obscured by the forming rolls. The technique described here permits the reconstruction of this path and identifies a new area of investigation of longitudinal strains in roll forming. These are often associated with shape defects such as bow, warping and end flare.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Roll forming is a continuous process in which a flat strip is incrementally bent to a desired profile. This process is increasingly used in automotive industry to form High Strength Steel (HSS) and Advanced High Strength Steel (AHSS) for structural components. Because of the large variety of applications of roll forming in the industry, Finite Element Analysis (FEA) is increasingly employed for roll forming process design. Formability and springback are two major concerns in the roll forming AHSS materials. Previous studies have shown that the elastic modulus (Young’s modulus) of AHSS materials can change when the material undergoes plastic deformation and the main goal of this study is to investigate the effect of a change in elastic modulus during forming on springback in roll forming. FEA has been applied for the roll forming simulation of a V-section using material data determined by experimental loading-unloading tests performed on mild, XF400, and DP780 steel. The results show that the reduction of the elastic modulus with pre-strain significantly influences springback in the roll forming of high strength steel while its effect is less when a softer steel is formed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L’obbiettivo di questa tesi è quello di analizzare le conseguenze della scelta del frame (Jordan o Einstein) nel calcolo delle proprietà degli spettri primordiali generati dall’inflazione ed in particolare dell’osservabile r (rapporto tensore su scalare) al variare del potenziale del campo che genera l’espansione accelerata. Partendo dalla descrizione della teoria dell’inflazione in relatività generale, focalizzando l’attenzione sui motivi che hanno portato all’introduzione di questa teoria, vengono presentate le tecniche di utilizzo comune per lo studio della dinamica omogenea (classica) inflazionaria e di quella disomogenea (quantistica). Una particolare attenzione viene rivolta ai metodi di approssimazione che è necessario adottare per estrarre predizioni analitiche dai modelli inflazionari per poi confrontarle con le osservazioni. Le tecniche introdotte vengono poi applicate ai modelli di inflazione con gravità indotta, ovvero ad una famiglia di modelli con accoppiamento non minimale tra il campo scalare inflatonico e il settore gravitazionale. Si porrà attenzione alle differenze rispetto ai modelli con accoppiamento minimale, e verrà studiata la dinamica in presenza di alcuni potenziali derivanti dalla teoria delle particelle e diffusi in letteratura. Il concetto di “transizione tra il frame di Jordan e il frame di Einstein” viene illustrato e le sue conseguenze nel calcolo approssimato del rapporto tensore su scalare sono discusse. Infine gli schemi di approssimazione proposti vengono analizzati numericamente. Risulterà che per due dei tre potenziali presentati i metodi di approssimazione sono più accurati nel frame di Einstein, mentre per il terzo potenziale i due frames portano a risultati analitici similmente accurati.