977 resultados para Zero order


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work is concerned with the derivation of optimal scaling laws, in the sense of matching lower and upper bounds on the energy, for a solid undergoing ductile fracture. The specific problem considered concerns a material sample in the form of an infinite slab of finite thickness subjected to prescribed opening displacements on its two surfaces. The solid is assumed to obey deformation-theory of plasticity and, in order to further simplify the analysis, we assume isotropic rigid-plastic deformations with zero plastic spin. When hardening exponents are given values consistent with observation, the energy is found to exhibit sublinear growth. We regularize the energy through the addition of nonlocal energy terms of the strain-gradient plasticity type. This nonlocal regularization has the effect of introducing an intrinsic length scale into the energy. We also put forth a physical argument that identifies the intrinsic length and suggests a linear growth of the nonlocal energy. Under these assumptions, ductile fracture emerges as the net result of two competing effects: whereas the sublinear growth of the local energy promotes localization of deformation to failure planes, the nonlocal regularization stabilizes this process, thus resulting in an orderly progression towards failure and a well-defined specific fracture energy. The optimal scaling laws derived here show that ductile fracture results from localization of deformations to void sheets, and that it requires a well-defined energy per unit fracture area. In particular, fractal modes of fracture are ruled out under the assumptions of the analysis. The optimal scaling laws additionally show that ductile fracture is cohesive in nature, i.e., it obeys a well-defined relation between tractions and opening displacements. Finally, the scaling laws supply a link between micromechanical properties and macroscopic fracture properties. In particular, they reveal the relative roles that surface energy and microplasticity play as contributors to the specific fracture energy of the material. Next, we present an experimental assessment of the optimal scaling laws. We show that when the specific fracture energy is renormalized in a manner suggested by the optimal scaling laws, the data falls within the bounds predicted by the analysis and, moreover, they ostensibly collapse---with allowances made for experimental scatter---on a master curve dependent on the hardening exponent, but otherwise material independent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We experimentally investigate the generation of high-order harmonics in a 4-mm-long gas cell using midinfrared femtosecond pulses at various wavelengths of 1240 nm, 1500 nm, and 1800 nm. It is observed that the yield and cutoff energy of the generated high-order harmonics critically depend on focal position, gas pressure, and size of the input beam which can be controlled by an aperture placed in front of the focal lens. By optimizing the experimental parameters, we achieve a cutoff energy at similar to 190 eV with the 1500 nm driving pulses, which is the highest for the three wavelengths chosen in our experiment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The brightness of a particular harmonic order is optimized for the chirp and initial phase of the laser pulse by genetic algorithm. The influences of the chirp and initial phase of the excitation pulse on the harmonic spectra are discussed in terms of the semi-classical model including the propagation effects. The results indicate that the harmonic intensity and cutoff have strong dependence on the chirp of the laser pulse, but slightly on its initial phase. The high-order harmonics can be enhanced by the optimal laser pulse and its cutoff can be tuned by optimization of the chirp and initial phase of the laser pulse.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 0.2% experimental accuracy of the 1968 Beers and Hughes measurement of the annihilation lifetime of ortho-positronium motivates the attempt to compute the first order quantum electrodynamic corrections to this lifetime. The theoretical problems arising in this computation are here studied in detail up to the point of preparing the necessary computer programs and using them to carry out some of the less demanding steps -- but the computation has not yet been completed. Analytic evaluation of the contributing Feynman diagrams is superior to numerical evaluation, and for this process can be carried out with the aid of the Reduce algebra manipulation computer program.

The relation of the positronium decay rate to the electronpositron annihilation-in-flight amplitude is derived in detail, and it is shown that at threshold annihilation-in-flight, Coulomb divergences appear while infrared divergences vanish. The threshold Coulomb divergences in the amplitude cancel against like divergences in the modulating continuum wave function.

Using the lowest order diagrams of electron-positron annihilation into three photons as a test case, various pitfalls of computer algebraic manipulation are discussed along with ways of avoiding them. The computer manipulation of artificial polynomial expressions is preferable to the direct treatment of rational expressions, even though redundant variables may have to be introduced.

Special properties of the contributing Feynman diagrams are discussed, including the need to restore gauge invariance to the sum of the virtual photon-photon scattering box diagrams by means of a finite subtraction.

A systematic approach to the Feynman-Brown method of Decomposition of single loop diagram integrals with spin-related tensor numerators is developed in detail. This approach allows the Feynman-Brown method to be straightforwardly programmed in the Reduce algebra manipulation language.

The fundamental integrals needed in the wake of the application of the Feynman-Brown decomposition are exhibited and the methods which were used to evaluate them -- primarily dis persion techniques are briefly discussed.

Finally, it is pointed out that while the techniques discussed have permitted the computation of a fair number of the simpler integrals and diagrams contributing to the first order correction of the ortho-positronium annihilation rate, further progress with the more complicated diagrams and with the evaluation of traces is heavily contingent on obtaining access to adequate computer time and core capacity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work proposes a new simulation methodology in which variable density turbulent flows can be studied in the context of a mixing layer with or without the presence of gravity. Specifically, this methodology is developed to probe the nature of non-buoyantly-driven (i.e. isotropically-driven) or buoyantly-driven mixing deep inside a mixing layer. Numerical forcing methods are incorporated into both the velocity and scalar fields, which extends the length of time over which mixing physics can be studied. The simulation framework is designed to allow for independent variation of four non-dimensional parameters, including the Reynolds, Richardson, Atwood, and Schmidt numbers. Additionally, the governing equations are integrated in such a way to allow for the relative magnitude of buoyant energy production and non-buoyant energy production to be varied.

The computational requirements needed to implement the proposed configuration are presented. They are justified in terms of grid resolution, order of accuracy, and transport scheme. Canonical features of turbulent buoyant flows are reproduced as validation of the proposed methodology. These features include the recovery of isotropic Kolmogorov scales under buoyant and non-buoyant conditions, the recovery of anisotropic one-dimensional energy spectra under buoyant conditions, and the preservation of known statistical distributions in the scalar field, as found in other DNS studies.

This simulation methodology is used to perform a parametric study of turbulent buoyant flows to discern the effects of varying the Reynolds, Richardson, and Atwood numbers on the resulting state of mixing. The effects of the Reynolds and Atwood numbers are isolated by looking at two energy dissipation rate conditions under non-buoyant (variable density) and constant density conditions. The effects of Richardson number are isolated by varying the ratio of buoyant energy production to total energy production from zero (non-buoyant) to one (entirely buoyant) under constant Atwood number, Schmidt number, and energy dissipation rate conditions. It is found that the major differences between non-buoyant and buoyant turbulent flows are contained in the transfer spectrum and longitudinal structure functions, while all other metrics are largely similar (e.g. energy spectra, alignment characteristics of the strain-rate tensor). Also, despite the differences noted between fully buoyant and non-buoyant turbulent fields, the scalar field, in all cases, is unchanged by these. The mixing dynamics in the scalar field are found to be insensitive to the source of turbulent kinetic energy production (non-buoyant vs. buoyant).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrated that a synthesized laser field consisting of an intense long (45 fs, multi-optical-cycle) laser pulse and a weak short (7 fs, few-optical-cycle) laser pulse can control the electron dynamics and high-order harmonic generation in argon, and generate extreme ultraviolet supercontinuum towards the production of a single strong attosecond pulse. The long pulse offers a large amplitude field, and the short pulse creates a temporally narrow enhancement of the laser field and a gate for the highest energy harmonic emission. This scheme paves the way to generate intense isolated attosecond pulses with strong multi-optical-cycle laser pulses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phase-matching condition of high-order harmonic generation driven by intense few-cycle pulses could be controlled by adding second-harmonic pulses to change the ionization fraction of the gaseous medium. The harmonic generation efficiency could be improved by moving the phase-matching point with an all-optical control of the ionization fraction or a proper change of the confocal parameter. A specific order of harmonics could be easily controlled to reach phase matching at a fixed higher gas pressure by adding second-harmonic pulses with a suitable intensity. Such an all-optical phase-matching control was demonstrated to be dependent upon the temporal delay between the fundamental-wave and second harmonic pulses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[ES]El South Pointing Chariot es un antiguo mecanismo de origen chino usado en sus inicios como instrumento de orientación, siendo su principal característica la existencia de un punto que siempre tiene velocidad angular absoluta nula. Tomando sus fundamentos como base, es posible realizar sistemas de guiado en direcciones estacionarias con múltiples aplicaciones en la actualidad, pudiendo usarse, por ejemplo, como sistema estabilizador. Para ello, debe realizarse su análisis cinemático, para comprender su funcionamiento, y comprobar que los resultados son correctos, pudiéndose hacer esto mediante un prototipo. La realización del prototipo engloba su diseño y posterior fabricación.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Hamilton Jacobi Bellman (HJB) equation is central to stochastic optimal control (SOC) theory, yielding the optimal solution to general problems specified by known dynamics and a specified cost functional. Given the assumption of quadratic cost on the control input, it is well known that the HJB reduces to a particular partial differential equation (PDE). While powerful, this reduction is not commonly used as the PDE is of second order, is nonlinear, and examples exist where the problem may not have a solution in a classical sense. Furthermore, each state of the system appears as another dimension of the PDE, giving rise to the curse of dimensionality. Since the number of degrees of freedom required to solve the optimal control problem grows exponentially with dimension, the problem becomes intractable for systems with all but modest dimension.

In the last decade researchers have found that under certain, fairly non-restrictive structural assumptions, the HJB may be transformed into a linear PDE, with an interesting analogue in the discretized domain of Markov Decision Processes (MDP). The work presented in this thesis uses the linearity of this particular form of the HJB PDE to push the computational boundaries of stochastic optimal control.

This is done by crafting together previously disjoint lines of research in computation. The first of these is the use of Sum of Squares (SOS) techniques for synthesis of control policies. A candidate polynomial with variable coefficients is proposed as the solution to the stochastic optimal control problem. An SOS relaxation is then taken to the partial differential constraints, leading to a hierarchy of semidefinite relaxations with improving sub-optimality gap. The resulting approximate solutions are shown to be guaranteed over- and under-approximations for the optimal value function. It is shown that these results extend to arbitrary parabolic and elliptic PDEs, yielding a novel method for Uncertainty Quantification (UQ) of systems governed by partial differential constraints. Domain decomposition techniques are also made available, allowing for such problems to be solved via parallelization and low-order polynomials.

The optimization-based SOS technique is then contrasted with the Separated Representation (SR) approach from the applied mathematics community. The technique allows for systems of equations to be solved through a low-rank decomposition that results in algorithms that scale linearly with dimensionality. Its application in stochastic optimal control allows for previously uncomputable problems to be solved quickly, scaling to such complex systems as the Quadcopter and VTOL aircraft. This technique may be combined with the SOS approach, yielding not only a numerical technique, but also an analytical one that allows for entirely new classes of systems to be studied and for stability properties to be guaranteed.

The analysis of the linear HJB is completed by the study of its implications in application. It is shown that the HJB and a popular technique in robotics, the use of navigation functions, sit on opposite ends of a spectrum of optimization problems, upon which tradeoffs may be made in problem complexity. Analytical solutions to the HJB in these settings are available in simplified domains, yielding guidance towards optimality for approximation schemes. Finally, the use of HJB equations in temporal multi-task planning problems is investigated. It is demonstrated that such problems are reducible to a sequence of SOC problems linked via boundary conditions. The linearity of the PDE allows us to pre-compute control policy primitives and then compose them, at essentially zero cost, to satisfy a complex temporal logic specification.