986 resultados para Wide-Base Tires.
Resumo:
The interpenetrating network structure provides an interesting avenue to novel materials. Locally resonant phononic crystal (LRPC) exhibits excellent sound attenuation performance based on the periodical arrangement of sound wave scatters. Combining the LRPC concept and interpenetrating network glassy structure, this paper has developed a new material which can achieve a wide band underwater strong acoustic absorption. Underwater absorption coefficients of different samples were measured by the pulse tube. Measurement results show that the new material possesses excellent underwater acoustic effects in a wide frequency range. Moreover, in order to investigate impacts of locally resonant units, some defects are introduced into the sample. The experimental result and the theoretical calculation both show that locally resonant units being connected to a network structure play an important role in achieving a wide band strong acoustic absorption.
Resumo:
氮杂环化合物大多数都是具有生理活性的物质,例如喹喔啉化合物与苯二氮卓类化合物,因此研究氮杂环化合物骨架的构建方法具有一定意义。绿色化学的迅速发展迫切要求化学家发展清洁、经济和环境较友好条件下的有机合成方法。其中,水相反应与绿色固体酸催化剂的使用都是实现绿色有机合成的重要途径,它们非常具有潜力,近些年受到了广泛关注。本论文的主要工作是围绕水相及固体酸催化条件下两类具有生物活性的含氮杂环小分子的合成方法而开展的,具体包括以下内容: 1. 研究和探索出了两类绿色固体酸催化剂蒙脱土(Mont. K-10)和杂多酸(H4SiW12O40), 在水相条件下成功合成出喹喔啉化合物的有效方法。两个催化体系都以无毒无公害的水作反应溶剂,实验条件温和,操作安全简便,反应速度快,底物普适性强,产率高,且产物易分离收集。两类固体酸催化剂,对设备腐蚀性小,可回收循环使用,对环境无公害; 蒙脱土催化大部分底物能得到当量产率的产物,硅钨酸催化催化剂负载量小。 2. 实现了无溶剂条件下,以杂多酸(H3PW12O40)作催化剂,高效合成1,5-苯二氮卓衍生物的合成方法。该催化体系具有以下一些优势:实验条件温和,反应速度较快,底物普适性良好,产物易分离收集,反应过程中没有加入其它有机溶剂,绿色环保。 ‘Green Chemistry’ is currently a major issue of modern chemistry. It is widely acknowledged that there is a growing need for more environmentally acceptable processes in the chemical industry. New green catalysts and green reaction media are the important and efficient strategies in green chemistry. New green catalysts include solid acid catalysts, solid base catalysts, metal catalysts not only possess higher activity and selectivity, but also are easily separated from reaction system. Green reaction media include water, supercritical fluids and ionic liquids can not only substitute traditional toxic and harmed organic solvents, but also improve reaction activity and selectivity. Meanwhile water is a promising green reaction medium for use in modern chemistry because it has a number of advantages such as the cheapest solvent available on earth, being non-hazardous and non-toxic to the environment. Solid acids had also attracted much attention for realizing green chemistry due to their unique acidity, high activity and efficiency as organic catalysts. Nitrogen-containing heterocyclic compounds of different ring sizes such as quinoxaline and benzodiazepine are the important pharmacologically active compounds. Due to the wide biological significance of these compounds, the synthesis of these types of compounds have received a great deal of attention. Despite the large availability of methods to construct nitrogen-containing heterocyclic compounds, there is still a strong need to further explore green methods to efficiently and safely synthesize these compounds. Thus, we aim at developing efficient and green methodology for the synthesis of quinoxaline and benzodiazepine carried out under water condition with solid acid catalysts. The contents of this dissertation are listed as the following: 1. We have developed two catalytic systems for the synthesis quinoxaline via the condensation of an aryl 1,2-diamine with a 1,2-diketone compound in the presence of Mont. K-10 or H4SiW12O40 as a catalyst in water solvent. Both of these two methods can be applied to wide range of substrates, tolerating aryl 1,2-diamine/1,2-diketone with the electron donating/drawing substituent. Operational simplicity, the ambient conditions, use of an economically convenient catalyst, use of water as a desirable solvent, high yields and short reaction times are the key features of these two protocols. 2. We developed a convenient and efficient protocol for the synthesis of a variety of 1,5-benzodiazepines in high yields via condensation of aryl o-phenylenediamine derivatives with a variety of ketones using H3PW12O40 as a green recyclable and heterogeneous catalyst under solvent-free condition. The simple experiment procedure combined with ease of recovery and reuse of this catalyst make this procedure quite simple, more convenient and environmentally benign.
Resumo:
The behaviors of double proton transfer (DPT) occurring in a representative glycinamide-formamidine complex have been investigated employing the B3LYP/6-311++G** level of theory. Computational results suggest that the participation of a formamidine molecule favors the proceeding of the proton transfer (PT) for glycinamide compared with that without mediator-assisted case. The DPT process proceeds with a concerted mechanism rather than a stepwise one since no zwitterionic complexes have been located during the DPT process. The barrier heights are 14.4 and 3.9 kcal/mol for the forward and reverse directions, respectively. However, both of them have been reduced by 3.1 and 2.9 kcal/mol to 11.3 and 1.0 kcal/mol with further inclusion of zero-point vibrational energy (ZPVE) corrections, where the lower reverse barrier height implies that the reverse reaction should proceed easily at any temperature of biological importance. Additionally, the one-electron oxidation process for the double H-bonded glycinamide-formamidine complex has also been investigated. The oxidated product is characterized by a distonic radical cation due to the fact that one-electron oxidation takes place on glycinamide fragment and a proton has been transferred from glycinamide to formamidine fragment spontaneously. As a result, the vertical and adiabatic ionization potentials for the neutral double H-bonded complex have been determined to be about 8.46 and 7.73 eV, respectively, where both of them have been reduced by about 0.79 and 0.87 eV relative to those of isolated glycinamide due to the formation of the intermolecular H-bond with formamidine. Finally, the differences between model system and adenine-thymine base pair have been discussed briefly.
Resumo:
Asymmetric cyclopropanation of olefins was carried out with chiral copper-Schiff base complexes derived from copper acetate monohydrate, substituted salicylaldehydes and a chiral amino alcohol. Substituents on salicylaldehyde framework demonstrate a significant effect on the steroselectivities. Those with electron-withdrawing properties enhance the selectivities, whereas bulky sustituents in ortho position to the phenol hydroxy group decrease the selectivities. An ee of more than 98% was achieved for the reaction of styrene with diazoacetate. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
A new copper-(Schiff-base) complex, derived from (S)-2-amino-1,1-di(3,5-di-t-butylphenyl)propanol, 2-hydroxy-5-nitrobenzaldehyde and copper acetate monohydrate, was used as an efficient catalyst for the cyclopropanation of styrene with diazoacetates, affording ees of up to 98%. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Serious concerns have been raised about the ecological effects of industrialized fishing1, 2, 3, spurring a United Nations resolution on restoring fisheries and marine ecosystems to healthy levels4. However, a prerequisite for restoration is a general understanding of the composition and abundance of unexploited fish communities, relative to contemporary ones. We constructed trajectories of community biomass and composition of large predatory fishes in four continental shelf and nine oceanic systems, using all available data from the beginning of exploitation. Industrialized fisheries typically reduced community biomass by 80% within 15 years of exploitation. Compensatory increases in fast-growing species were observed, but often reversed within a decade. Using a meta-analytic approach, we estimate that large predatory fish biomass today is only about 10% of pre-industrial levels. We conclude that declines of large predators in coastal regions5 have extended throughout the global ocean, with potentially serious consequences for ecosystems5, 6, 7. Our analysis suggests that management based on recent data alone may be misleading, and provides minimum estimates for unexploited communities, which could serve as the ‘missing baseline’8 needed for future restoration efforts.