931 resultados para Wetland mitigation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis entitled Development of nitrifying ans photosynthetic sulfur bacteria based bioaugmentation systems for the bioremediation of ammonia and hydregen sulphide in shrimp culture. the thesis is to propose a sustainable, low cost option for the mitigation of toxic ammonia and hydrogen sulphide in shrimp culture systems. Use of ‘bioaugmentors’ as pond additives is an emerging field in aquaculture. Understanding the role of organisms involved in the ‘bioaugmentor’ will obviously help to optimize conditions for their activity.The thesis describes the use of wood powder immobilization of nitrifying consortia.Shrimp grow out systems are specialized and highly dynamic aquaculture production units which when operated under zero exchange mode require bioremediation of ammonia, nitrite nitrogen and hydrogen sulphide to protect the crop. The research conducted here is to develop an economically viable and user friendly technology for addressing the above problem. The nitrifying bacterial consortia (NBC) generated earlier (Achuthan et al., 2006) were used for developing the technology.Clear demonstration of better quality of immobilized nitrifiers generated in this study for field application.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The major objective of this chapter was to estimate the indirect benefits provided by the Cochin wetlands to direct, indirect and non-user populations.This chapter gives the details of the Contingent valuation survey that was executed in the study area. Section one described the actual survey and its execution. Section two undertook a detailed discussion of the methodological issues involved in the survey. Section three contained some discussion on the study.This analysis has demonstrated the feasibility of extending the use of contingent valuation methods to local populations in developing countries like India. Certain issues emerge from these applications. Income is strongly related to willingness to pay in these surveys, yet income levels are often low.Secondly, education is not a factor that influences willingness to pay in the coastal belt very much. Rather, relation of individual occupation to any wetland based activity very much influenced their willingness to pay. The study revealed that people very much valued the indirect function performed by wetlands, in fact as much as they valued the direct benefits provided by the system. There still exist differences of opinions among experts when undertaking such valuation studies. However, in the absence of a better technique for valuing environmental services that have no markets, this is definitely a first step

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study deals with the different hydrogeological characteristics of the coastal region of central Kerala and a comparative analysis with corresponding hard rock terrain. The coastal regions lie in areas where the aquifer systems discharge groundwater ultimately into the sea. Groundwater development in such regions will require a precise understanding of the complex mechanism of the saline and fresh water relationship, so that the withdrawals are so regulated as to avoid situations leading to upcoming of the saline groundwater bodies as also to prevent migration of sea water ingress further inland. Coastal tracts of Kerala are formed by several drainage systems. Thick pile of semi-consolidated and consolidated sediments from Tertiary to Recent age underlies it. These sediments comprise phreatic and confined aquifer systems. The corresponding hard rock terrain is encountered with laterites and underlined by the Precambrian metamorphic rocks. Supply of water from hard rock terrain is rather limited. This may be due to the small pore size, low degree of interconnectivity and low extent of weathering of the country rocks. The groundwater storage is mostly controlled by the thickness and hydrological properties of the weathered zone and the aquifer geometry. The over exploitation of groundwater, beyond the ‘safe yield’ limit, cause undesirable effects like continuous reduction in groundwater levels, reduction in river flows, reduction in wetland surface, degradation of groundwater quality and many other environmental problems like drought, famine etc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Emergence of drug resistance among pathogenic bacteria to currently available antibiotics has intensified the search for novel bioactive compounds from unexplored habitats. In the present study actinomycetes were isolated from two relatively unexplored and widely differing habitats such as mountain and wetlands and their ability to produce antibacterial substances were analyzed. Pure cultures of actinomycetes were identified by morphological and biochemical tests. Various genera of actinomycetes encountered included Nocardia, Pseudonocardia, Streptomyces, Nocardiopsis, Streptosporangium, Micromonospora, Rhodococcus, Actinosynnema, Nocardiodes, Kitasatosporia, Gordona, Intrasporangium and Streptoalloteichus. The frequency of occurrence of each genus was found to vary with sample. About 47% of wetland isolates and 33% of mountain isolates were identified as various species of Nocardia. The isolated strains differed among themselves in their ability to decompose proteins and amino acids and also in enzyme production potential. Antibiotic activities of these actinomycetes were evaluated against 12 test pathogenic bacteria by well diffusion method using agar wells in glycerol-yeast extract agar. About 95% of actinomycete isolates from wetland ecosystem and 75% of highland isolates suppressed in different degrees the growth of test pathogens. Relatively high antibacterial activity among these isolates underlined their potential as a source of novel antibiotics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diversity of different groups of Bacillus and Actinomycetes in the water and sediment samples from kumarakom estuary was analysed to find out potential strains for further application. Bacillus genera was identified and grouped into five phenogroups .Phenogroups show differences in the shape of the spore,position of the spore,and swelling of the sporangium.Ability of the isolates to elaborate various hydrolytic enzymes and their ability to reduce nitrate and ferment various carbohydrate sources were also studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In today's complicated computing environment, managing data has become the primary concern of all industries. Information security is the greatest challenge and it has become essential to secure the enterprise system resources like the databases and the operating systems from the attacks of the unknown outsiders. Our approach plays a major role in detecting and managing vulnerabilities in complex computing systems. It allows enterprises to assess two primary tiers through a single interface as a vulnerability scanner tool which provides a secure system which is also compatible with the security compliance of the industry. It provides an overall view of the vulnerabilities in the database, by automatically scanning them with minimum overhead. It gives a detailed view of the risks involved and their corresponding ratings. Based on these priorities, an appropriate mitigation process can be implemented to ensure a secured system. The results show that our approach could effectively optimize the time and cost involved when compared to the existing systems

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cochin estuary is a shallow brackish water body situated on the south west coast of India. It is a tropical positive estuary extending between 90 40’ and 100 12’ N and 760 10’and 760 30’ E with its northern boundary at Azhikode and southern boundary at Thannermukkom bund.The abundance of benthic fauna in an ecosystem shows the close relationship to its environment and reflects the characteristics of an ecological niche. Seasonal and monthly variations in the distribution of macrobenthos in relation to sediment characteristics were conducted in Cochin estuary from 2009-10 periods. Oxidation-reduction potential showed reducing trends that affected the distribution and diversity of fauna. Seasonal variations in water quality and river discharge pattern affected the faunal composition in the different stations. Sewage mixing was the principal source of organic pollution in the Cochin estuary. The sediment pH was generally on the alkaline side ranging from 4.99 at St.9 and 8.33 at St.1.The Eh ranged from -11mV at St.3 to -625mV at St.2.The temperature varied from 260C to 320C in the estuary. The moisture content ranged from 1.63 to 12.155%, that of organic carbon from 0 09 at St. 6 to 4.29% at St.9 and that of organic matter from 0.16 to 7.39%. Seasonally, the average of Eh was highest during the monsoon (156.22 mV) and in the pre monsoon (140.94 mV). The average pH for the 9 study stations was 7.68 during monsoon period and 7.08 during post monsoon. Based on group wise seasonal analysis, the average mean abundance was maximum for polychaetes (43.47) followed by nematodes (33.62), crustaceans (21.62), molluscs (11.94) and Pisces (0.05) in the estuary. Monsoon season was most favourable for benthic faunal abundance followed by the post monsoon period in the study. The series of human interventions like dredging, discharge of industrial effluents, urbanisation and related aspects had a strong influence on the distribution, abundance of benthic macrofauna in the wetland.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mangroves of Kerala are fast disappearing due to developmental activities.There are very few studies conducted in the chemical aspects of these ecosystems.The main objective of this study is to assess the spatial and seasonal variation of hydrographical as well as nutrients in mangrove ecosystems along Kerala coast. Five sampling sites least intervened by industries were selected for the study. Sampling was done for a period of six months in monthly intervals. A monsoonal hike of dissolved nutrients was observed in all ecosystems except in the constructed mangrove wetland. The constructed wetland exhibited a different hydrography and nutrient level in all seasons. The mangrove forest in this area consists of the species Bruguiera gymnorrhiza which has been planted since forty years.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Distribution and chemistry of major inorganic forms of nutrients along with physico-chemical parameters were investigated. Surface sediments and overlying waters of the Ashtamudi and Vembanad Lakes were taken for the study, which is situated in the southwest coast of India. High concentrations of dissolved nitrogen and phosphorus compounds carried by the river leads to oxygen depletion in the water column. A concurrent increase in the bottom waters along with decrease in dissolved oxygen was noticed. This support to nitrification process operating in the sediment-water interface of the Ashtamudi and Vembanad Lake. Estuarine sediments are clayey sand to silty sand both in Ashtamudi and Vembanad in January and May. Present study indicates that the sediment texture is the major controlling factor in the distribution of these nutrient forms. For water samples nitrite, inorganic phosphate was high in Vembanad in January and May compared to Ashtamudi. For sediments, enhanced level of inorganic phosphate and nitrite was found in Vembanad during January and May. It had been observed that the level of N and P is more in sediments. A comparative assessment of the Ashtamudi and Vembanad Lake reveals that the Vembanad wetland is more deteriorated compared to the Ashtamudi wetland system

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the current study, the duckweed aquatic macrophyte Spirodela polyrrhiza was employed for assessing the toxicity of two wetlands in the Eloor industrial estate, Ernakulam district, Kerala, South India. The assessments were made according to OECD guidelines for testing (2006). The studies involve study of growth parameters, Growth Index, Biomass and changes in productivity. The water samples were collected from two different wetland sites at the same time. The spirodela plants were introduced into several dilutions of wetland water samples. The parameters were measured after 7 days of exposure. All samples except control affected all parameters. The results of this study emphasize the significance of duckweeds as standard and reliable testing material for biological parameters in polluted aquatic ecosystem

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cement industry ranks 2nd in energy consumption among the industries in India. It is one of the major emitter of CO2, due to combustion of fossil fuel and calcination process. As the huge amount of CO2 emissions cause severe environment problems, the efficient and effective utilization of energy is a major concern in Indian cement industry. The main objective of the research work is to assess the energy cosumption and energy conservation of the Indian cement industry and to predict future trends in cement production and reduction of CO2 emissions. In order to achieve this objective, a detailed energy and exergy analysis of a typical cement plant in Kerala was carried out. The data on fuel usage, electricity consumption, amount of clinker and cement production were also collected from a few selected cement industries in India for the period 2001 - 2010 and the CO2 emissions were estimated. A complete decomposition method was used for the analysis of change in CO2 emissions during the period 2001 - 2010 by categorising the cement industries according to the specific thermal energy consumption. A basic forecasting model for the cement production trend was developed by using the system dynamic approach and the model was validated with the data collected from the selected cement industries. The cement production and CO2 emissions from the industries were also predicted with the base year as 2010. The sensitivity analysis of the forecasting model was conducted and found satisfactory. The model was then modified for the total cement production in India to predict the cement production and CO2 emissions for the next 21 years under three different scenarios. The parmeters that influence CO2 emissions like population and GDP growth rate, demand of cement and its production, clinker consumption and energy utilization are incorporated in these scenarios. The existing growth rate of the population and cement production in the year 2010 were used in the baseline scenario. In the scenario-1 (S1) the growth rate of population was assumed to be gradually decreasing and finally reach zero by the year 2030, while in scenario-2 (S2) a faster decline in the growth rate was assumed such that zero growth rate is achieved in the year 2020. The mitigation strategiesfor the reduction of CO2 emissions from the cement production were identified and analyzed in the energy management scenarioThe energy and exergy analysis of the raw mill of the cement plant revealed that the exergy utilization was worse than energy utilization. The energy analysis of the kiln system showed that around 38% of heat energy is wasted through exhaust gases of the preheater and cooler of the kiln sysetm. This could be recovered by the waste heat recovery system. A secondary insulation shell was also recommended for the kiln in the plant in order to prevent heat loss and enhance the efficiency of the plant. The decomposition analysis of the change in CO2 emissions during 2001- 2010 showed that the activity effect was the main factor for CO2 emissions for the cement industries since it is directly dependent on economic growth of the country. The forecasting model showed that 15.22% and 29.44% of CO2 emissions reduction can be achieved by the year 2030 in scenario- (S1) and scenario-2 (S2) respectively. In analysing the energy management scenario, it was assumed that 25% of electrical energy supply to the cement plants is replaced by renewable energy. The analysis revealed that the recovery of waste heat and the use of renewable energy could lead to decline in CO2 emissions 7.1% for baseline scenario, 10.9 % in scenario-1 (S1) and 11.16% in scenario-2 (S2) in 2030. The combined scenario considering population stabilization by the year 2020, 25% of contribution from renewable energy sources of the cement industry and 38% thermal energy from the waste heat streams shows that CO2 emissions from Indian cement industry could be reduced by nearly 37% in the year 2030. This would reduce a substantial level of greenhouse gas load to the environment. The cement industry will remain one of the critical sectors for India to meet its CO2 emissions reduction target. India’s cement production will continue to grow in the near future due to its GDP growth. The control of population, improvement in plant efficiency and use of renewable energy are the important options for the mitigation of CO2 emissions from Indian cement industries

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Cochin estuary (CE), which is one of the largest wetland ecosystems, extends from Thanneermukkam bund in the south to Azhikode in the north. It functions as an effluent repository for more than 240 industries, the characteristics of which includes fertilizer, pesticide, radioactive mineral processing, chemical and allied industries, petroleum refining and heavy metal processing industries (Thyagarajan, 2004). Studies in the CE have been mostly on the spatial and temporal variations in the physical, chemical and biological characteristics of the estuary (Balachandran et al., 2006; Madhu et al., 2007; Menon et al., 2000; Qasim 2003;Qasim and Gopinathan 1969) . Although several monitoring programs have been initiated in the CE to understand the level of heavy metal pollution, these were restricted to trace metals distribution (Balachandran et al., 2005) or the influence of anthropogenic inputs on the benthos and phytoplankton (Madhu et al., 2007;Jayaraj, 2006). Recently, few studies were carried out on microbial ecology in the CE(Thottathil et al 2008a and b;Parvathi et al., 2009and 2011; Thomas et al., 2006;Chandran and Hatha, 2003). However, studies on metal - microbe interaction are hitherto not undertaken in this estuary. Hence, a study was undertaken at 3 sites with different level of heavy metal concentration tounderstand the abundance, diversity and mechanisms of resistance in metal resistant bacteria and its impact on the nutrient regeneration. The present work has also focused on the response of heavy metal resistant bacteria towards antibacterial agent’s antibiotics and silver nanoparticles

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Energy production from biomass and the conservation of ecologically valuable grassland habitats are two important issues of agriculture today. The combination of a bioenergy production, which minimises environmental impacts and competition with food production for land with a conversion of semi-natural grasslands through new utilization alternatives for the biomass, led to the development of the IFBB process. Its basic principle is the separation of biomass into a liquid fraction (press fluid, PF) for the production of electric and thermal energy after anaerobic digestion to biogas and a solid fraction (press cake, PC) for the production of thermal energy through combustion. This study was undertaken to explore mass and energy flows as well as quality aspects of energy carriers within the IFBB process and determine their dependency on biomass-related and technical parameters. Two experiments were conducted, in which biomass from semi-natural grassland was conserved as silage and subjected to a hydrothermal conditioning and a subsequent mechanical dehydration with a screw press. Methane yield of the PF and the untreated silage was determined in anaerobic digestion experiments in batch fermenters at 37°C with a fermentation time of 13-15 and 27-35 days for the PF and the silage, respectively. Concentrations of dry matter (DM), ash, crude protein (CP), crude fibre (CF), ether extract (EE), neutral detergent fibre (NDF), acid detergent fibre (ADF), acid detergent ligning (ADL) and elements (K, Mg, Ca, Cl, N, S, P, C, H, N) were determined in the untreated biomass and the PC. Higher heating value (HHV) and ash softening temperature (AST) were calculated based on elemental concentration. Chemical composition of the PF and mass flows of all plant compounds into the PF were calculated. In the first experiment, biomass from five different semi-natural grassland swards (Arrhenaterion I and II, Caricion fuscae, Filipendulion ulmariae, Polygono-Trisetion) was harvested at one late sampling (19 July or 31 August) and ensiled. Each silage was subjected to three different temperature treatments (5°C, 60°C, 80°C) during hydrothermal conditioning. Based on observed methane yields and HHV as energy output parameters as well as literature-based and observed energy input parameters, energy and green house gas (GHG) balances were calculated for IFBB and two reference conversion processes, whole-crop digestion of untreated silage (WCD) and combustion of hay (CH). In the second experiment, biomass from one single semi-natural grassland sward (Arrhenaterion) was harvested at eight consecutive dates (27/04, 02/05, 09/05, 16/05, 24/05, 31/05, 11/06, 21/06) and ensiled. Each silage was subjected to six different treatments (no hydrothermal conditioning and hydrothermal conditioning at 10°C, 30°C, 50°C, 70°C, 90°C). Energy balance was calculated for IFBB and WCD. Multiple regression models were developed to predict mass flows, concentrations of elements in the PC, concentration of organic compounds in the PF and energy conversion efficiency of the IFBB process from temperature of hydrothermal conditioning as well as NDF and DM concentration in the silage. Results showed a relative reduction of ash and all elements detrimental for combustion in the PC compared to the untreated biomass of 20-90%. Reduction was highest for K and Cl and lowest for N. HHV of PC and untreated biomass were in a comparable range (17.8-19.5 MJ kg-1 DM), but AST of PC was higher (1156-1254°C). Methane yields of PF were higher compared to those of WCD when the biomass was harvested late (end of May and later) and in a comparable range when the biomass was harvested early and ranged from 332 to 458 LN kg-1 VS. Regarding energy and GHG balances, IFBB, with a net energy yield of 11.9-14.1 MWh ha-1, a conversion efficiency of 0.43-0.51, and GHG mitigation of 3.6-4.4 t CO2eq ha-1, performed better than WCD, but worse than CH. WCD produces thermal and electric energy with low efficiency, CH produces only thermal energy with a low quality solid fuel with high efficiency, IFBB produces thermal and electric energy with a solid fuel of high quality with medium efficiency. Regression models were able to predict target parameters with high accuracy (R2=0.70-0.99). The influence of increasing temperature of hydrothermal conditioning was an increase of mass flows, a decrease of element concentrations in the PC and a differing effect on energy conversion efficiency. The influence of increasing NDF concentration of the silage was a differing effect on mass flows, a decrease of element concentrations in the PC and an increase of energy conversion efficiency. The influence of increasing DM concentration of the silage was a decrease of mass flows, an increase of element concentrations in the PC and an increase of energy conversion efficiency. Based on the models an optimised IFBB process would be obtained with a medium temperature of hydrothermal conditioning (50°C), high NDF concentrations in the silage and medium DM concentrations of the silage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Water scarcity and food insecurity are pervasive issues in the developing world and are also intrinsically linked to one another. Through the connection of the water cycle and the carbon cycle this study illustrates that synergistic benefits can be realized by small scale farmers through the implementation of waste water irrigated agroforestry. The WaNuLCAS model is employed using La Huerta agroforestry site in Texcoco, South Central Mexico, as the basis for parameterization. The results of model simulations depicting scenarios of water scarcity and waste water irrigation clearly show that the addition of waste water greatly increases the agroforestry system’s generation of crop yields, above- and below-ground biomass, soil organic matter and carbon storage potential. This increase in carbon sequestration by the system translates into better local food security, diversified household income through payments for ecosystem services and contributes to the mitigation of global climate change.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Climate change remains a major challenge for today’s and future societies due to its immense impacts on human lives and the natural environment. This thesis investigates the extent to which individuals are willing and prepared to voluntarily contribute to climate protection and to adjust to new climatic conditions in order to cope with the consequences of climate change and reduce the severity of potential negative impacts. The thesis thereby combines research in the fields of the private provision of environmental public goods and adaptation to climate change, which is still widely unconnected in the existing literature. The six contributions of this thesis mainly focus on microeconometric analyses using data from international surveys in China, Germany, and the USA. The main findings are: (i) A substantial share of individuals is willing to voluntarily contribute to climate protection and to adapt to climatic change. The engagement in both strategies is positively interrelated at the individual level and the analyses reveal hardly any evidence that adaptation activities crowd out individuals’ incentives to engage in climate protection. (ii) The main determinants of individuals’ adaptation activities seem to be the subjective risk perception as well as socio-economic and socio-demographic characteristics like age, gender, education, and income, while their climate protection efforts are found to be broadly motivated by financial advantages from these activities and additional immaterial benefits. (iii) The empirical findings also suggest a significantly positive relationship between certain climate protection activities. Substitutions are found to occur merely if one measure is perceived to be more effective in providing climate protection or if individuals have high environmental preferences. (iv) This thesis further reveals a common understanding of a (normatively) fair burden-sharing in international climate policy across citizens in China, Germany, and the USA. The highest preferences are found for the accountability principle.