888 resultados para WAVELET
Resumo:
Il presente progetto di tesi è stato svolto in collaborazione con l’ufficio tecnico di Ricerca & Sviluppo dell’azienda Cefla Dentale, divisione MyRay (Imola - BO Italia). A seguito dell’esperienza maturata nel settore dei radiografici dentali, scelte aziendali hanno richiesto l’aggiornamento delle tecniche di elaborazione dell’immagine acquisita. Ogni prodotto commercializzato è fornito di un software predisposto alla gestione dei pazienti e alle operazioni di post-procesing tipiche: riduzione del rumore, aumento dei contrasti, della luminosità, misurazioni e tutti quelli presenti nei più comuni software di elaborazione grafica. Questi filtri digitali sono raccolti in una libreria sviluppata a seguito di una collaborazione esterna. Col presente elaborato viene effettuata una panoramica sulle tecniche di filtraggio utilizzate e vengono introdotte diverse proposte finalizzate alla riduzione del rumore. Test di valutazione qualitativa e quantitativa, su fantocci target, fantocci antropomorfi e set di immagini in-vivo, guideranno la scelta verso la proposta migliore, la quale verrà successivamente inserita all’interno della libreria e andrà ad aggiungersi ai filtri a disposizione dell’utente finale.
Resumo:
Utilizing remote sensing methods to assess landscape-scale ecological change are rapidly becoming a dominant force in the natural sciences. Powerful and robust non-parametric statistical methods are also actively being developed to compliment the unique characteristics of remotely sensed data. The focus of this research is to utilize these powerful, robust remote sensing and statistical approaches to shed light on woody plant encroachment into native grasslands--a troubling ecological phenomenon occurring throughout the world. Specifically, this research investigates western juniper encroachment within the sage-steppe ecosystem of the western USA. Western juniper trees are native to the intermountain west and are ecologically important by means of providing structural diversity and habitat for many species. However, after nearly 150 years of post-European settlement changes to this threatened ecosystem, natural ecological processes such as fire regimes no longer limit the range of western juniper to rocky refugia and other areas protected from short fire return intervals that are historically common to the region. Consequently, sage-steppe communities with high juniper densities exhibit negative impacts, such as reduced structural diversity, degraded wildlife habitat and ultimately the loss of biodiversity. Much of today's sage-steppe ecosystem is transitioning to juniper woodlands. Additionally, the majority of western juniper woodlands have not reached their full potential in both range and density. The first section of this research investigates the biophysical drivers responsible for juniper expansion patterns observed in the sage-steppe ecosystem. The second section is a comprehensive accuracy assessment of classification methods used to identify juniper tree cover from multispectral 1 m spatial resolution aerial imagery.
Resumo:
The identification and accurate location of centers of brain activity are vital both in neuro-surgery and brain research. This study aimed to provide a non-invasive, non-contact, accurate, rapid and user-friendly means of producing functional images intraoperatively. To this end a full field Laser Doppler imager was developed and integrated within the surgical microscope and perfusion images of the cortical surface were acquired during awake surgery whilst the patient performed a predetermined task. The regions of brain activity showed a clear signal (10-20% with respect to the baseline) related to the stimulation protocol which lead to intraoperative functional brain maps of strong statistical significance and which correlate well with the preoperative fMRI and intraoperative cortical electro-stimulation. These initial results achieved with a prototype device and wavelet based regressor analysis (the hemodynamic response function being derived from MRI applications) demonstrate the feasibility of LDI as an appropriate technique for intraoperative functional brain imaging.
Resumo:
Audio-visual documents obtained from German TV news are classified according to the IPTC topic categorization scheme. To this end usual text classification techniques are adapted to speech, video, and non-speech audio. For each of the three modalities word analogues are generated: sequences of syllables for speech, “video words” based on low level color features (color moments, color correlogram and color wavelet), and “audio words” based on low-level spectral features (spectral envelope and spectral flatness) for non-speech audio. Such audio and video words provide a means to represent the different modalities in a uniform way. The frequencies of the word analogues represent audio-visual documents: the standard bag-of-words approach. Support vector machines are used for supervised classification in a 1 vs. n setting. Classification based on speech outperforms all other single modalities. Combining speech with non-speech audio improves classification. Classification is further improved by supplementing speech and non-speech audio with video words. Optimal F-scores range between 62% and 94% corresponding to 50% - 84% above chance. The optimal combination of modalities depends on the category to be recognized. The construction of audio and video words from low-level features provide a good basis for the integration of speech, non-speech audio and video.
Resumo:
The western North Pacific (WNP) is the area of the world most frequently affected by tropical cyclones (TCs). However, little is known about the socio-economic impacts of TCs in this region, probably because of the limited relevant loss data. Here, loss data from Munich RE's NatCatSERVICE database is used, a high-quality and widely consulted database of natural disasters. In the country-level loss normalisation technique we apply, the original loss data are normalised to present-day exposure levels by using the respective country's nominal gross domestic product at purchasing power parity as a proxy for wealth. The main focus of our study is on the question of whether the decadal-scale TC variability observed in the Northwest Pacific region in recent decades can be shown to manifest itself economically in an associated variability in losses. It is shown that since 1980 the frequency of TC-related loss events in the WNP exhibited, apart from seasonal and interannual variations, interdecadal variability with a period of about 22 yr – driven primarily by corresponding variations of Northwest Pacific TCs. Compared to the long-term mean, the number of loss events was found to be higher (lower) by 14% (9%) in the positive (negative) phase of the decadal-scale WNP TC frequency variability. This was identified for the period 1980–2008 by applying a wavelet analysis technique. It was also possible to demonstrate the same low-frequency variability in normalised direct economic losses from TCs in the WNP region. The identification of possible physical mechanisms responsible for the observed decadal-scale Northwest Pacific TC variability will be the subject of future research, even if suggestions have already been made in earlier studies.
Resumo:
In the California Current System, strong mesoscale variability associated with eddies and meanders of the coastal jet play an important role in the biological productivity of the area. To assess the dominant timescales of variability, a wavelet analysis is applied to almost nine years (October 1997 to July 2006) of 1-km-resolution, 5-day-averaged, Sea-viewing Wide Field-of-view Sensor (SeaWiFS) chlorophyll a (chl a) concentration data. The dominant periods of chlorophyll variance, and how these change in time, are quantified as a function of distance offshore. The maximum variance in chlorophyll occurs with a period of similar to 100-200 days. A seasonal cycle in the timing of peak variance is revealed, with maxima in spring/summer close to shore (20 km) and in autumn/winter 200 km offshore. Interannual variability in the magnitude of chlorophyll variance shows maxima in 1999, 2001, 2002, and 2005. There is a very strong out-of-phase correspondence between the time series of chlorophyll variance and the Pacific Decadal Oscillation (PDO) index. We hypothesize that positive PDO conditions, which reflect weak winds and poor upwelling conditions, result in reduced mesoscale variability in the coastal region, and a subsequent decrease in chlorophyll variance. Although the chlorophyll variance responds to basin-scale forcing, chlorophyll biomass does not necessarily correspond to the phase of the PDO, suggesting that it is influenced more by local-scale processes. The mesoscale variability in the system may be as important as the chl a biomass in determining the potential productivity of higher trophic levels.
Resumo:
Long-term electrocardiogram (ECG) often suffers from relevant noise. Baseline wander in particular is pronounced in ECG recordings using dry or esophageal electrodes, which are dedicated for prolonged registration. While analog high-pass filters introduce phase distortions, reliable offline filtering of the baseline wander implies a computational burden that has to be put in relation to the increase in signal-to-baseline ratio (SBR). Here we present a graphics processor unit (GPU) based parallelization method to speed up offline baseline wander filter algorithms, namely the wavelet, finite, and infinite impulse response, moving mean, and moving median filter. Individual filter parameters were optimized with respect to the SBR increase based on ECGs from the Physionet database superimposed to auto-regressive modeled, real baseline wander. A Monte-Carlo simulation showed that for low input SBR the moving median filter outperforms any other method but negatively affects ECG wave detection. In contrast, the infinite impulse response filter is preferred in case of high input SBR. However, the parallelized wavelet filter is processed 500 and 4 times faster than these two algorithms on the GPU, respectively, and offers superior baseline wander suppression in low SBR situations. Using a signal segment of 64 mega samples that is filtered as entire unit, wavelet filtering of a 7-day high-resolution ECG is computed within less than 3 seconds. Taking the high filtering speed into account, the GPU wavelet filter is the most efficient method to remove baseline wander present in long-term ECGs, with which computational burden can be strongly reduced.
Resumo:
Many studies investigated solar–terrestrial responses (thermal state, O₃ , OH, H₂O) with emphasis on the tropical upper atmosphere. In this paper the Focus is switched to water vapor in the mesosphere at a mid-latitudinal location. Eight years of water vapor profile measurements above Bern (46.88°N/7.46°E) are investigated to study oscillations with the Focus on periods between 10 and 50 days. Different spectral analyses revealed prominent features in the 27-day oscillation band, which are enhanced in the upper mesosphere (above 0.1 hPa, ∼64 km) during the rising sun spot activity of solar cycle 24. Local as well as zonal mean Aura MLS observations Support these results by showing a similar behavior. The relationship between mesospheric water and the solar Lyman-α flux is studied by comparing thesi-milarity of their temporal oscillations. The H₂O oscillation is negatively correlated to solar Lyman-α oscillation with a correlation coefficient of up to −0.3 to −0.4, and the Phase lag is 6–10 days at 0.04 hPa. The confidence level of the correlation is ≥99%. This finding supports the assumption that the 27-day oscillation in Lyman-α causes a periodical photo dissociation loss in mesospheric water. Wavelet power spectra, cross-wavelet transform and wavelet coherence analysis (WTC)complete our study. More periods of high common wavelet power of H₂O and solar Lyman-α are present when amplitudes of the Lyman-α flux increase. Since this is not a measure of physical correlation a more detailed view on WTC is necessary, where significant (two sigma level)correlations occur intermittently in the 27 and 13-day band with variable Phase lock behavior. Large Lyman-α oscillations appeared after the solar super storm in July 2012 and the H₂O oscillations show a well pronounced anticorrelation. The competition between advective transport and photo dissociation loss of mesospheric water vapor may explain the sometimes variable Phase relationship of mesospheric H₂O and solar Lyman-α oscillations. Generally, the WTC analysis indicates that solar variability causes observable photochemical and dynamical processes in the mid-latitude mesosphere.
Resumo:
The California Current System encompasses a southward flowing current which is perturbed by ubiquitous mesoscale variability. The extent to which latitudinal patterns of physical variability are reflected in the distribution of biological parameters is poorly known. To investigate the latitudinal distribution of chlorophyll variance, a wavelet analysis is applied to nearly 9 years (October 1997 to July 2006) of 1-km-resolution Sea-viewing Wide Field-of-view Sensor (SeaWiFS) chlorophyll concentration data at 5-day resolution. Peaks in the latitudinal distribution of chlorophyll variance coincide with features of the coastal topography. Maxima in variance are located offshore of Vancouver Island and downstream of Heceta Bank, Cape Blanco, Point Arena, and possibly Point Conception. An analysis of dominant wavelengths in the chlorophyll data reveals a transfer of energy into smaller scales is generated in the vicinity of the coastal capes. The latitudinal distribution of variance in sea level anomaly corresponds closely to the chlorophyll variance in the nearshore region (<100 km offshore), suggesting that the same processes determine the distribution of both. Farther offshore, there is no correspondence between latitudinal patterns of sea level anomaly and chlorophyll variance. This likely represents a transition from physical to biological control of the phytoplankton distribution.
Resumo:
The electroencephalogram (EEG) is a physiological time series that measures electrical activity at different locations in the brain, and plays an important role in epilepsy research. Exploring the variance and/or volatility may yield insights for seizure prediction, seizure detection and seizure propagation/dynamics.^ Maximal Overlap Discrete Wavelet Transforms (MODWTs) and ARMA-GARCH models were used to determine variance and volatility characteristics of 66 channels for different states of an epileptic EEG – sleep, awake, sleep-to-awake and seizure. The wavelet variances, changes in wavelet variances and volatility half-lives for the four states were compared for possible differences between seizure and non-seizure channels.^ The half-lives of two of the three seizure channels were found to be shorter than all of the non-seizure channels, based on 95% CIs for the pre-seizure and awake signals. No discernible patterns were found the wavelet variances of the change points for the different signals. ^
Resumo:
Recent advances in radiometric dating result in significant improvements in the geological timescale and provide better insight into the timing of various processes and evolutions within the Earth's system. However, no radiometric ages are contained within the Givetian. Consequently, the absolute ages of the Givetian Stage boundaries, as well as the stage's duration, remain poorly constrained. As an alternative, the analysis of sedimentary cycles allows for the estimation of the duration of this stage. We examined the high-resolution magnetic susceptibility signals of four Givetian outcrops in the Givet area for a possible astronomical imprint, to fully understand the rates of evolutionary and environmental change. All four sections are firmly correlated and wavelet analyses of the magnetic susceptibility signals reveal the imprint of astronomical eccentricity forcing. The highly stable 405 kyr cycles constrain the duration of the Givetian Stage at 4.35±0.45 Myr, which is in good agreement with the International Chronostratigraphic Chart (5.0 Myr). The studied sections also exhibit an imprint of obliquity, suggesting a climatic teleconnection between low and high latitudes. The corresponding microfacies curves demonstrate similar astronomical imprint, and thereby indicate that the observed 10**5 year-scale cyclicity is the result of climatic and environmental change.
Resumo:
This study presents high-resolution foraminiferal-based sea surface temperature, sea surface salinity and upper water column stratification reconstructions off Cape Hatteras, a region sensitive to atmospheric and thermohaline circulation changes associated with the Gulf Stream. We focus on the last 10,000 years (10 ka) to study the surface hydrology changes under our current climate conditions and discuss the centennial to millennial time scale variability. We observed opposite evolutions between the conditions off Cape Hatteras and those south of Iceland, known today for the North Atlantic Oscillation pattern. We interpret the temperature and salinity changes in both regions as co-variation of activities of the subtropical and subpolar gyres. Around 8.3 ka and 5.2-3.5 ka, positive salinity anomalies are reconstructed off Cape Hatteras. We demonstrate, for the 5.2-3.5 ka period, that the salinity increase was caused by the cessation of the low salinity surface flow coming from the north. A northward displacement of the Gulf Stream, blocking the southbound low-salinity flow, concomitant to a reduced Meridional Overturning Circulation is the most likely scenario. Finally, wavelet transform analysis revealed a 1000-year period pacing the d18O signal over the early Holocene. This 1000-year frequency band is significantly coherent with the 1000-year frequency band of Total Solar Irradiance (TSI) between 9.5 ka and 7 ka and both signals are in phase over the rest of the studied period.
Resumo:
The northward extent of the influence of the W African monsoon during humid periods of interglacials is subject to investigations highlighting feedback mechanisms, such as vegetation. To detect this regional variation and the climate system acting farther to the north will be the aim of this paper focussing on the Holocene. We present two very high-resolution Holocene sediment records off NW Africa located at 31°N and 27°N. The well-known mid-Holocene climate change from the "African Humid Period" to present arid conditions is well reflected by the terrigenous input in the southern core. In contrast, in the northern core spectral and wavelet analyses indicate a periodic oscillation of about 900 years of the terrigenous input throughout the last 9000 years B.P. We conclude that the W African monsoonal influence characterized by the abrupt climatic change at 5000 years B.P. can be separated from the influence of the N Atlantic climate system reflected by a periodic oscillation throughout the Holocene.
Resumo:
Integrated Ocean Drilling Program (IODP) Site U1308 (central North Atlantic) records paleomagnetic directional and relative paleointensity (RPI) variations for the last 1.5 Myr, in 110 m of the sediment sequence at a mean sedimentation rate of 7.3 cm/kyr. A detailed benthic oxygen isotope record was combined with RPI to produce an integrated, high-resolution magneto-isotopic stratigraphy for Site U1308. Apart from the well-known polarity reversals in this interval, the Punaruu excursion is recorded at 1092 ka and the Cobb Mountain Subchron in the 1182-1208 ka interval. The paleointensity proxies are determined as slopes of NRM versus ARM and NRM versus ARMAQ (ARM acquisition) with linear correlation coefficients to monitor the quality of the linear fit. The RPI record for Site U1308 is compared with the three other paleointensity records (one from the Western Equatorial Pacific and two from the North Atlantic) that cover the same time interval and have accompanying oxygen isotope records. The Match protocol of Lisiecki and Lisiecki (2002) is used to optimize the correlation of paleointensity records. Beginning with the original (published) age models for each record, the Match routine is used to optimize the RPI correlations to Site U1308, with checks to ensure compatibility with oxygen isotope records. Squared wavelet coherence (WTC) indicates significant improvement in RPI (and oxygen isotope) correlations after matching each RPI record to Site U1308, particularly for periods > 10 kyr. The level of coherence for the Atlantic RPI records and the lower resolution Pacific record implies synchronous global variability (at scales > 10 kyr) that can be attributed to the axial dipole geomagnetic field.
Resumo:
Continuous Wavelet Transform was applied to bed elevation profiles (BEP) and used in the study in order to recognise the spatial distribution of bedforms and discriminate between their hierarchical scales. In particular, the spatial distribution of the hierarchical scales is highlighted by averaging wavelet power spectra over different bands, and displayed as the wavelet variance of the BEP (see map). Four dune classes were defined, following Ashley (1990): small dunes (1-5 m), medium dunes (5-10 m), large dunes (10-100 m), and very large dunes (>100 m).