868 resultados para Vertical crustal motion
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O conhecimento da dinâmica populacional e da distribuição vertical de insetos pragas em plantas hospedeiras é fundamental para o desenvolvimento de programas de manejo integrado de pragas. No presente trabalho efetuou-se um levantamento populacional de formas ápteras do pulgão Brevicoryne brassicae (L.), visando determinar a época de maior densidade populacional e a distribuição vertical em plantas de couve, (Brassica oleracea L. var. acephala DC.), cultivadas em Jaboticabal, SP. O estudo foi realizado durante as safras de brássicas de 1998 e 1999, efetuando-se correção da acidez do solo por meio de aplicação de calcário apenas no campo utilizado em 1998. A amostragem dos pulgões foi feita visualmente em folhas classificadas em três categorias: apical, mediana e basal. Nas duas safras estudadas, a infestação de B. brassicae na couve atingiu a maior densidade populacional em setembro, diminuindo rapidamente a seguir. Nos dois campos não se observou a mesma distribuição de B. brassicae em folhas apicais, medianas e basais. Os fatores que podem ter contribuído para as diferenças observadas no padrão de distribuição do pulgão devem estar relacionados com a precipitação pluvial e o calcário magnesiano.
Resumo:
A melancia é uma espécie tradicionalmente conduzida em campo no sistema rasteiro. As cultivares de frutos pequenos (1 a 3 kg), que adquirem melhores preços de mercado, vêm sendo cultivadas também em ambiente protegido, onde são conduzidas no sistema vertical, com poda de ramos e raleio de frutos. Essas práticas possibilitam aumentar o adensamento das plantas, a qualidade e a produtividade de frutos em comparação ao sistema rasteiro. Objetivou-se com este trabalho avaliar a influência de três alturas de condução (1,7; 2,2 e 2,7 m) e duas densidades de plantas (3,17 e 4,76 plantas m-2) sobre as características produtivas e qualitativas da mini melancia Smile cultivada em ambiente protegido. A poda da haste principal foi realizada aos 43, 55 e 66 dias após o transplante (DAT) para as alturas de condução de 1,7; 2,2 e 2,7 m, respectivamente. A massa seca dos ramos, dos pecíolos, das folhas e total foram afetados pela altura de condução, cujos maiores valores foram obtidos para as plantas conduzidas a 2,2 e 2,7 m de altura. A área foliar, a área foliar específica e o índice de área foliar não foram influenciados pela altura de condução das plantas. A altura de condução de 2,7 m elevou a produtividade total. Entretanto, a produtividade comercial, a massa média dos frutos e todas as características qualitativas não foram significativamente diferentes das obtidos pela altura de poda de 2,2 m. em relação à densidade de plantas, a melhor opção foi a de 4,76 plantas m-2, pois elevou a produtividade comercial em 37,4% sem reduzir a massa média dos frutos.
Resumo:
A análise do efeito da profundidade de semeadura e carga vertical visando a melhorar o aproveitamento, e a integração entre o solo e a cultura é muito difícil. O objetivo do presente trabalho foi avaliar cargas verticais (0; 98; 196 e 294 N) sobre as rodas compactadoras das semeadoras, combinando com profundidades de semeadura (0,03; 0,05 e 0,07 m) para a cultura da soja. O trabalho foi realizado no DER/UNESP - Jaboticabal, na pista de ensaio do Laboratório de Máquinas e Mecanização Agrícola (LAMMA), utilizando o delineamento experimental em blocos casualizados, no esquema fatorial (4 x 3), com 12 tratamentos e três repetições, totalizando 36 observações. Foram analisados: emergência de plântulas, estandes inicial e final, índice de sobrevivência, área mobilizada e rendimento de grãos. Os resultados evidenciaram que, com exceção da área mobilizada em relação à profundidade de semeadura, todas as demais variáveis não foram influenciadas pelos tratamentos.
Resumo:
Visual Odometry is the process that estimates camera position and orientation based solely on images and in features (projections of visual landmarks present in the scene) extraced from them. With the increasing advance of Computer Vision algorithms and computer processing power, the subarea known as Structure from Motion (SFM) started to supply mathematical tools composing localization systems for robotics and Augmented Reality applications, in contrast with its initial purpose of being used in inherently offline solutions aiming 3D reconstruction and image based modelling. In that way, this work proposes a pipeline to obtain relative position featuring a previously calibrated camera as positional sensor and based entirely on models and algorithms from SFM. Techniques usually applied in camera localization systems such as Kalman filters and particle filters are not used, making unnecessary additional information like probabilistic models for camera state transition. Experiments assessing both 3D reconstruction quality and camera position estimated by the system were performed, in which image sequences captured in reallistic scenarios were processed and compared to localization data gathered from a mobile robotic platform
Resumo:
Quadrotors aircraft are composed by four propellers mounted on four engines on a cross or x disposition, and, in this structure, the engines on the same arm spin in the same direction and the other arm in the opposite direction. By rotating each helix generates vertical upward thrust. The control is done by varying the rotational speed of each motor. Among the advantages of this type of vehicle can cite the mechanical simplicity of construction, the high degree of maneuverability and the ability to have vertical takeoffs and landings. The modeling and control of quadrirrotores have been a challenge due to problems such as nonlinearity and coupling between variables. Several strategies have been developed to control this type of vehicle, from the classical control to modern. There are air surveillance applications where a camera is fixed on the vehicle to point forward, where it is desired that the quadrotor moves at a fixed altitude toward the target also pointing forward, which imposes an artificial constraint motion, because it is not desired that it moves laterally, but only forwards or backwards and around its axes . This restriction is similar to the naturally existing on robots powered by wheels with differential drive, which also can not move laterally, due to the friction of the wheels. Therefore, a position control strategy similar to that used in this type of robot could be adapted for aerial robots like quadrotor. This dissertation presents and discusses some strategies for the control of position and orientation of quadrotors found in the literature and proposes a strategy based on dynamic control of mobile robots with differential drive, called the variable reference control. The validity of the proposed strategy is demonstrated through computer simulations
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this study was to evaluate the effect of warm-up on agility (AG) and on vertical jump (VJ) tests in youth soccer players. Sixteen players performed the AG and VJ tests without warm-up (NW) and with warm-up (WW) randomly, within two weeks, at least 48 h interval, during season. The warm-up was performed only a light running during 10 min. The paired t-test identified significant difference (p <0,05) between the NW and WW conditions in the tests of SR and CJ (9,14 +/- 0,28 vs 8,94 +/- 0,30 s e 51,4 +/- 4,2 vs 54,5 +/- 6,4 cm, respectively). The warm-up performed on light intensity running was effective to improve the AG and VJ tests performance in youth soccer players.
Resumo:
Human motion seems to be guided by some optimal principles. In general, it is assumed that human walking is generated with minimal energy consumption. However, in the presence of disturbances during gait, there is a trade-off between stability (avoiding a fall) and energy-consumption. This work analyses the obstacle-crossing with the leading foot. It was hypothesized that energy-saving mechanisms during obstacle-crossing are modulated by the requirement to avoid a fall using the available sensory information, particularly, by vision. A total of fourteen subjects, seven with no visual impairment and seven blind, walked along a 5 meter flat pathway with an obstacle of 0.26 m height located at 3 m from the starting point. The seven subjects with normal vision crossed the obstacle successfully 30 times in two conditions: blindfolded and with normal vision. The seven blind subjects did the same 30 times. The motion of the leading limb was recorded by video at 60 Hz. There were markers placed on the subject's hip, knee, ankle, rear foot, and forefoot. The motion data were filtered with a fourth order Butterworth filter with a cut-off frequency of 4 Hz. The following variables were calculated: horizontal distance between the leading foot and the obstacle at toe-off prior to (DHPO) and after (DHOP) crossing, minimal vertical height from the foot to the obstacle (DVPO), average step velocity (VELOm). The segmental energies were also calculated and the work consumed by the leading limb during the crossing obstacle was computed for each trial. A statistical analysis repeated-measures ANOVA was conducted on these dependent variables revealing significant differences between the vision and non-vision conditions in healthy subjects. In addition, there were no significant differences between the blind and people with vision blindfolded. These results indicate that vision is crucial to determine the optimal trade-off between energy consumption and avoiding a trip during obstacle crossing.
Resumo:
The Wii Balance Board (WBB) began to be investigated as a low-cost alternative for assessing static balance in vertical posture. However, studies employed methodological procedures that did not eliminate result variability between the tests and equipment used. Objective: Determine the validity and reproducibility of the WBB as an instrument for assessing static balance in the vertical position, using simultaneous data analysis and superimposed equipment. Methods: This is an accuracy study of 29 healthy young individuals of both sexes aged 18 to 30 years. Subjects were assessed 24h apart (test-retest), using unipodal and bipodal support tests, with eyes closed and open. To that end the WBB was placed on top of a force platform (FP) and data (postural sway) were collected simultaneously on both devices. Validity and reproducibility were analyzed using the interclass correlation coefficient (ICC). Finally, Bland-Altman analysis was applied to assess agreement. Results: The sample was composed of 23 women and 6 men, with mean age of 24.2±6.3 years, 60.7±6.3 kg and 1.64±4.2 m. The validity of the WBB compared to the FP was excellent for all 4 tasks proposed (ICC = 0.93 0.98). The reproducibility analyzed by test-retest was excellent for the bipodal support tasks (ICC = 0.93-0.98) and only moderate for the unipodal support tests (ICC = 0.46 0.70). Graphic analysis exhibited good agreement between the devices, since most of the measures were within the limits of agreement. Conclusion: this study proved the validity and reproducibility of the Wii Balance Board as an instrument for assessing static balance in vertical posture, using simultaneous analysis with superimposed equipment. Thus, the WBB has been increasingly used by physical therapists and other health professionals in their clinical practice, as both a rehabilitation and assessment tool
Resumo:
The rotational motion of an artificial satellite is studied by considering torques produced by gravity gradient and direct solar radiation pressure. A satellite of circular cylinder shape is considered here, and Andoyers variables are used to describe the rotational motion. Expressions for direct solar radiation torque are derived. When the earth's shadow is not considered, an analytical solution is obtained using Lagrange's method of variation of parameters. A semi-analytical procedure is proposed to predict the satellite's attitude under the influence of the earth's shadow. The analytical solution shows that angular variables are linear and periodic functions of time while their conjugates suffer only periodic variations. When compared, numerical and analytical solutions have a good agreement during the time range considered.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Two methods to evaluate the state transition matrix are implemented and analyzed to verify the computational cost and the accuracy of both methods. This evaluation represents one of the highest computational costs on the artificial satellite orbit determination task. The first method is an approximation of the Keplerian motion, providing an analytical solution which is then calculated numerically by solving Kepler's equation. The second one is a local numerical approximation that includes the effect of J(2). The analysis is performed comparing these two methods with a reference generated by a numerical integrator. For small intervals of time (1 to 10s) and when one needs more accuracy, it is recommended to use the second method, since the CPU time does not excessively overload the computer during the orbit determination procedure. For larger intervals of time and when one expects more stability on the calculation, it is recommended to use the first method.