972 resultados para Venom specificity
Resumo:
We have investigated the origin of the Pto disease resistance (R) gene that was previously identified in the wild tomato species Lycopersicon pimpinellifolium and isolated by map-based cloning. Pto encodes a serine-threonine protein kinase that specifically recognizes strains of Pseudomonas syringae pv. tomato (Pst) that express the avirulence gene avrPto. We examined an accession of the distantly related wild species Lycopersicon hirsutum var. glabratum that exhibits avrPto-specific resistance to Pst. The Pst resistance of L. hirsutum was introgressed into a susceptible Lycopersicon esculentum background to create the near-isogenic line 96T133-3. Resistance to Pst(avrPto) in 96T133-3 was inherited as a single dominant locus and cosegregated with a restriction fragment length polymorphism detected by the Pto gene. This observation suggested that a member of the Pto gene family confers Pst(avrPto) resistance in this L. hirsutum line. Here we report the cloning and characterization of four members of the Pto family from 96T133-3. One gene (LhirPto) is 97% identical to Pto and encodes a catalytically active protein kinase that elicits a hypersensitive response when coexpressed with avrPto in leaves of Nicotiana benthamiana. In common with the Pto kinase, the LhirPto protein physically interacts with AvrPto and downstream members of the Pto signaling pathway. Our studies indicate that R genes of the protein kinase class may not evolve rapidly in response to pathogen pressure and rather that their ability to recognize specific Avr proteins can be highly conserved.
Resumo:
The proteasome is a large protease complex consisting of multiple catalytic subunits that function simultaneously to digest protein substrates. This complexity has made deciphering the role each subunit plays in the generation of specific protein fragments difficult. Positional scanning libraries of peptide vinyl sulfones were generated in which the amino acid located directly at the site of hydrolysis (P1 residue) was held constant and sequences distal to that residue (P2, P3, and P4 positions) were varied across all natural amino acids (except cysteine and methionine). Binding information for each of the individual catalytic subunits was obtained for each library under a variety of different conditions. The resulting specificity profiles indicated that substrate positions distal to P1 are critical for directing substrates to active subunits in the complex. Furthermore, specificity profiles of IFN-γ-regulated subunits closely matched those of their noninducible counterparts, suggesting that subunit swapping may modulate substrate processing by a mechanism that does require a change in the primary sequence specificity of individual catalytic subunits in the complex. Finally, specificity profiles were used to design specific inhibitors of a single active site in the complex. These reagents can be used to further establish the role of each subunit in substrate processing by the proteasome.
Resumo:
Arc repressor forms a homodimer in which the subunits intertwine to create a single globular domain. To obtain Arc sequences that fold preferentially as heterodimers, variants with surface patches of excess positive or negative charge were designed. Several but not all oppositely charged sequence pairs showed preferential heterodimer formation. In the most successful design pair, α helix B of one subunit contained glutamic acids at positions 43, 46, 47, 48, and 50, whereas the other subunit contained lysines or arginines at these positions. A continuum electrostatic model captures many features of the experimental results and suggests that the most successful designs include elements of both positive and negative design.
Resumo:
Thioredoxin (Trx) and glutathione (GSH) systems are considered to be two major redox systems in animal cells. They are reduced by NADPH via Trx reductase (TR) or oxidized GSH (GSSG) reductase and further supply electrons for deoxyribonucleotide synthesis, antioxidant defense, and redox regulation of signal transduction, transcription, cell growth, and apoptosis. We cloned and characterized a pyridine nucleotide disulfide oxidoreductase, Trx and GSSG reductase (TGR), that exhibits specificity for both redox systems. This enzyme contains a selenocysteine residue encoded by the TGA codon. TGR can reduce Trx, GSSG, and a GSH-linked disulfide in in vitro assays. This unusual substrate specificity is achieved by an evolutionary conserved fusion of the TR and glutaredoxin domains. These observations, together with the biochemical probing and molecular modeling of the TGR structure, suggest a mechanism whereby the C-terminal selenotetrapeptide serves a role of a protein-linked GSSG and shuttles electrons from the disulfide center within the TR domain to either the glutaredoxin domain or Trx.
Resumo:
Sm and Sm-like proteins are members of a family of small proteins that is widespread throughout eukaryotic kingdoms. These proteins form heteromers with one another and bind, as heteromeric complexes, to various RNAs, recognizing primarily short U-rich stretches. Interestingly, completion of several genome projects revealed that archaea also contain genes that may encode Sm-like proteins. Herein, we studied the properties of one Sm-like protein derived from the archaebacterium Archaeoglobus fulgidus and overexpressed in Escherichia coli. This single small protein closely reflects the properties of an Sm or Sm-like protein heteromer. It binds to RNA with a high specificity for oligo(U), and assembles onto the RNA to form a complex that exhibits, as judged by electron microscopy, a ring-like structure similar to the ones observed with the Sm core ribonucleoprotein and the like Sm (LSm) protein heteromer. Importantly, multivariate statistical analysis of negative-stain electron-microscopic images revealed a sevenfold symmetry for the observed ring structure, indicating that the proteins form a homoheptamer. These results support the structural model of the Sm proteins derived from crystallographic studies on Sm heterodimers and demonstrate that the Sm protein family evolved from a single ancestor that was present before the eukaryotic and archaeal kingdoms separated.
Resumo:
Two of the most important models to account for the specificity and sensitivity of the T cell receptor (TCR) are the kinetic proofreading and serial ligation models. However, although kinetic proofreading provides a means for individual TCRs to measure accurately the length of time they are engaged and signal appropriately, the stochastic nature of ligand dissociation means the kinetic proofreading model implies that at high concentrations the response of the cell will be relatively nonspecific. Recent ligand experiments have revealed the phenomenon of both negative and positive crosstalk among neighboring TCRs. By using a Monte Carlo simulation of a lattice of TCRs, we integrate receptor crosstalk with the kinetic proofreading and serial ligation models and discover that receptor cooperativity can enhance T cell specificity significantly at a very modest cost to the sensitivity of the response.
Resumo:
The reduction of 12-oxophytodienoic acid (OPDA) to 3-oxo-2(2′[Z]-pentenyl)-cyclopentane-1-octanoic acid is catalyzed by 12-oxophytodienoate-10,11-reductase (OPR). Analysis of the isomer preference of OPR has indicated that the activity is composed of two isoenzymes exhibiting different stereoselectivities. The two isoforms of OPR have been separated, using protein extracts of Rock Harlequin (Corydalis sempervirens) as the starting material. OPRI, the enzyme reported earlier from the same species and corresponding to the cloned OPR from Arabidopsis, utilized 9R,13R-OPDA >> 9S,13R-OPDA but not the 13S-configured isomers, whereas the new activity, OPRII, effectively reduced all four OPDA isomers, including the natural 9S,13S-OPDA (cis-[+]-OPDA). OPRII activity is characterized in detail. The enzyme's enzymatic, biochemical, and immunological properties prove that it is a close relative of OPRI. The roles of OPRI and OPRII in octadecanoid biology are discussed.
Resumo:
cDNA corresponding to the GA4 gene of Arabidopsis thaliana L. (Heynh.) was expressed in Escherichia coli, from which cell lysates converted [14C]gibberellin (GA)9 and [14C]GA20 to radiolabeled GA4 and GA1, respectively, thereby confirming that GA4 encodes a GA 3β-hydroxylase. GA9 was the preferred substrate, with a Michaelis value of 1 μm compared with 15 μm for GA20. Hydroxylation of these GAs was regiospecific, with no indication of 2β-hydroxylation or 2,3-desaturation. The capacity of the recombinant enzyme to hydroxylate a range of other GA substrates was investigated. In general, the preferred substrates contained a polar bridge between C-4 and C-10, and 13-deoxy GAs were preferred to their 13-hydroxylated analogs. Therefore, no activity was detected using GA12-aldehyde, GA12, GA19, GA25, GA53, or GA44 as the open lactone (20-hydroxy-GA53), whereas GA15, GA24, and GA44 were hydroxylated to GA37, GA36, and GA38, respectively. The open lactone of GA15 (20-hydroxy-GA12) was hydroxylated but less efficiently than GA15. In contrast to the free acid, GA25 19,20-anhydride was 3β-hydroxylated to give GA13. 2,3-Didehydro-GA9 and GA5 were converted by recombinant GA4 to the corresponding epoxides 2,3-oxido-GA9 and GA6.
Resumo:
Cat's claw (Doxantha unguis-cati L.) vine accumulates nearly 80% palmitoleic acid (16:1Δ9) plus cis-vaccenic acid (18:1Δ11) in its seed oil. To characterize the biosynthetic origin of these unusual fatty acids, cDNAs for acyl-acyl carrier protein (acyl-ACP) desaturases were isolated from developing cat's claw seeds. The predominant acyl-ACP desaturase cDNA identified encoded a polypeptide that is closely related to the stearoyl (Δ9–18:0)-ACP desaturase from castor (Ricinis communis L.) and other species. Upon expression in Escherichia coli, the cat's claw polypeptide functioned as a Δ9 acyl-ACP desaturase but displayed a distinct substrate specificity for palmitate (16:0)-ACP rather than stearate (18:0)-ACP. Comparison of the predicted amino acid sequence of the cat's claw enzyme with that of the castor Δ9–18:0-ACP desaturase suggested that a single amino acid substitution (L118W) might account in large part for the differences in substrate specificity between the two desaturases. Consistent with this prediction, conversion of leucine-118 to tryptophan in the mature castor Δ9–18:0-ACP desaturase resulted in an 80-fold increase in the relative specificity of this enzyme for 16:0-ACP. The alteration in substrate specificity observed in the L118W mutant is in agreement with a crystallographic model of the proposed substrate-binding pocket of the castor Δ9–18:0-ACP desaturase.
Resumo:
The cysteine endoproteases (EP)-A and EP-B were purified from green barley (Hordeum vulgare L.) malt, and their identity was confirmed by N-terminal amino acid sequencing. EP-B cleavage sites in recombinant type-C hordein were determined by N-terminal amino acid sequencing of the cleavage products, and were used to design internally quenched, fluorogenic peptide substrates. Tetrapeptide substrates of the general formula 2-aminobenzoyl-P2-P1-P1′-P2′-tyrosine(NO2)-aspartic acid, in which cleavage occurs between P1 and P1′, showed that the cysteine EPs preferred phenylalanine, leucine, or valine at P2. Arginine was preferred to glutamine at P1, whereas proline at P2, P1, or P1′ greatly reduced substrate kinetic specificity. Enzyme cleavage of C hordein was mainly determined by the primary sequence at the cleavage site, because elongation of substrates, based on the C hordein sequence, did not make them more suitable substrates. Site-directed mutagenesis of C hordein, in which serine or proline replaced leucine, destroyed primary cleavage sites. EP-A and EP-B were both more active than papain, mostly because of their much lower Km values.
Resumo:
Rational engineering of enzymes involves introducing key amino acids guided by a knowledge of protein structure to effect a desirable change in function. To date, all successful attempts to change specificity have been limited to substituting individual amino acids within a protein fold. However, the infant field of protein engineering will only reach maturity when changes in function can be generated by rationally engineering secondary structures. Guided by x-ray crystal structures and molecular modeling, site-directed mutagenesis has been used to systematically invert the coenzyme specificity of Thermus thermophilus isopropylmalate dehydrogenase from a 100-fold preference for NAD to a 1000-fold preference for NADP. The engineered mutant, which is twice as active as wild type, contains four amino acid substitutions and an alpha-helix and loop that replaces the original beta-turn. These results demonstrate that rational engineering of secondary structures to produce enzymes with novel properties is feasible.