841 resultados para Vaccin anti-cancer
Resumo:
Aims To assess self-reported lifetime prevalence of cardiovascular disease (CVD) among colorectal cancer survivors, and examine the cross-sectional and prospective associations of lifestyle factors with co-morbid CVD. Methods Colorectal cancer survivors were recruited (n = 1966). Data were collected at approximately 5, 12, 24 and 36 months post-diagnosis. Cross-sectional findings included six CVD categories (hypercholesterolaemia, hypertension, diabetes, heart failure, kidney disease and ischaemic heart disease (IHD)) at 5 months post-diagnosis. Longitudinal outcomes included the probability of developing (de novo) co-morbid CVD by 36 months post-diagnosis. Lifestyle factors included body mass index, physical activity, television (TV) viewing, alcohol consumption and smoking. Results Co-morbid CVD prevalence at 5 months post-diagnosis was 59%, and 16% of participants with no known CVD at the baseline reported de novo CVD by 36 months. Obesity at the baseline predicted de novo hypertension (odds ratio [OR] = 2.20, 95% confidence intervals [CI] = 1.09, 4.45) and de novo diabetes (OR = 6.55, 95% CI = 2.19, 19.53). Participants watching >4 h of TV/d at the baseline (compared with <2 h/d) were more likely to develop ischaemic heart disease by 36 months (OR = 5.51, 95% CI = 1.86, 16.34). Conclusion Overweight colorectal cancer survivors were more likely to suffer from co-morbid CVD. Interventions focusing on weight management and other modifiable lifestyle factors may reduce functional decline and improve survival.
Resumo:
This thesis describes a discrete component of a larger mixed-method (survey and interview) study that explored the health-promotion and risk-reduction practices of younger premenopausal survivors of ovarian, breast and haematological cancers. This thesis outlines my distinct contribution to the larger study, which was to: (1) Produce a literature review that thoroughly explored all longer-term breast cancer treatment outcomes, and which outlined the health risks to survivors associated with these; (2) Describe and analyse the health-promotion and risk-reduction behaviours of nine younger female survivors of breast cancer as articulated in the qualitative interview dataset; and (3) Test the explanatory power of the Precede-Proceed theoretical framework underpinning the study in relation to the qualitative data from the breast cancer cohort. The thesis reveals that breast cancer survivors experienced many adverse outcomes as a result of treatment. While they generally engaged in healthy lifestyle practices, a lack of knowledge about many recommended health behaviours emerged throughout the interviews. The participants also described significant internal and external pressures to behave in certain ways because of the social norms surrounding the disease. This thesis also reports that the Precede-Proceed model is a generally robust approach to data collection, analysis and interpretation in the context of breast cancer survivorship. It provided plausible explanations for much of the data in this study. However, profound sociological and psychological implications arose during the analysis that were not effectively captured or explained by the theories underpinning the model. A sociological filter—such as Turner’s explanation of the meaning of the body and embodiment in the social sphere (Turner, 2008)—and the psychological concerns teased out in Mishel’s (1990) Uncertainty in Illness Theory, provided a useful dimension to the findings generated through the Precede-Proceed model. The thesis concludes with several recommendations for future research, clinical practice and education in this context.
Resumo:
Objective Theoretical models of post-traumatic growth (PTG) have been derived in the general trauma literature to describe the post-trauma experience that facilitates the perception of positive life changes. To develop a statistical model identifying factors that are associated with PTG, structural equation modelling (SEM) was used in the current study to assess the relationships between perception of diagnosis severity, rumination, social support, distress, and PTG. Method A statistical model of PTG was tested in a sample of participants diagnosed with a variety of cancers (N=313). Results An initial principal components analysis of the measure used to assess rumination revealed three components: intrusive rumination, deliberate rumination of benefits, and life purpose rumination. SEM results indicated that the model fit the data well and that 30% of the variance in PTG was explained by the variables. Trauma severity was directly related to distress, but not to PTG. Deliberately ruminating on benefits and social support were directly related to PTG. Life purpose rumination and intrusive rumination were associated with distress. Conclusions The model showed that in addition to having unique correlating factors, distress was not related to PTG, thereby providing support for the notion that these are discrete constructs in the post-diagnosis experience. The statistical model provides support that post-diagnosis experience is simultaneously shaped by positive and negative life changes and that one or the other outcome may be prevalent or may occur concurrently. As such, an implication for practice is the need for supportive care that is holistic in nature.
Resumo:
Damage to genetic material represents a persistent and ubiquitous threat to genomic stability. Once DNA damage is detected, a multifaceted signaling network is activated that halts the cell cycle, initiates repair, and in some instances induces apoptotic cell death. In this article, we will review DNA damage surveillance networks, which maintain the stability of our genome, and discuss the efforts underway to identify chemotherapeutic compounds targeting the core components of DNA double-strand breaks (DSB) response pathway. The majority of tumor cells have defects in maintaining genomic stability owing to the loss of an appropriate response to DNA damage. New anticancer agents are exploiting this vulnerability of cancer cells to enhance therapeutic indexes, with limited normal tissue toxicity. Recently inhibitors of the checkpoint kinases Chk1 and Chk2 have been shown to sensitize tumor cells to DNA damaging agents. In addition, the treatment of BRCA1- or BRCA2-deficient tumor cells with poly(ADP-ribose) polymerase (PARP) inhibitors also leads to specific tumor killing. Due to the numerous roles of p53 in genomic stability and its defects in many human cancers, therapeutic agents that restore p53 activity in tumors are the subject of multiple clinical trials. In this article we highlight the proteins mentioned above and catalog several additional players in the DNA damage response pathway, including ATM, DNA-PK, and the MRN complex, which might be amenable to pharmacological interventions and lead to new approaches to sensitize cancer cells to radio- and chemotherapy. The challenge is how to identify those patients most receptive to these treatments.
Resumo:
A protein-truncating variant of CHEK2, 1100delC, is associated with a moderate increase in breast cancer risk. We have determined the prevalence of this allele in index cases from 300 Australian multiple-case breast cancer families, 95% of which had been found to be negative for mutations in BRCA1 and BRCA2. Only two (0.6%) index cases heterozygous for the CHEK2 mutation were identified. All available relatives in these two families were genotyped, but there was no evidence of co-segregation between the CHEK2 variant and breast cancer. Lymphoblastoid cell lines established from a heterozygous carrier contained approximately 20% of the CHEK2 1100delC mRNA relative to wild-type CHEK2 transcript. However, no truncated CHK2 protein was detectable. Analyses of expression and phosphorylation of wild-type CHK2 suggest that the variant is likely to act by haploinsufficiency. Analysis of CDC25A degradation, a downstream target of CHK2, suggests that some compensation occurs to allow normal degradation of CDC25A. Such compensation of the 1100delC defect in CHEK2 might explain the rather low breast cancer risk associated with the CHEK2 variant, compared to that associated with truncating mutations in BRCA1 or BRCA2.
Resumo:
Goals of work: The aim of this secondary data analysis was to investigate symptom clusters over time for symptom management of a patient group after commencing adjuvant chemotherapy. Materials and methods: A prospective longitudinal study of 219 cancer outpatients conducted within 1 month of commencing chemotherapy (T1), 6 months (T2), and 12 months (T3) later. Patients' distress levels were assessed for 42 physical symptoms on a clinician-modified Rotterdam Symptom Checklist. Symptom clusters were identified in exploratory factor analyses at each time. Symptom inclusion in clusters was determined from structure coefficients. Symptoms could be associated with multiple clusters. Stability over time was determined from symptom cluster composition and the proportion of symptoms in the initial symptom clusters replicated at later times. Main results Fatigue and daytime sleepiness were the most prevalent distressing symptoms over time. The median number of concurrent distressing symptoms approximated 7, over time. Five consistent clusters were identified at T1, 2, and T3. An additional two clusters were identified at 12 months, possibly due to less variation in distress levels. Weakness and fatigue were each associated with two, four, and five symptom clusters at T1, T2, and T3, respectively, potentially suggesting different causal mechanisms. Conclusion: Stability is a necessary attribute of symptom clusters, but definitional clarification is required. We propose that a core set of concurrent symptoms identifies each symptom cluster, signifying a common cause. Additional related symptoms may be included over time. Further longitudinal investigation is required to identify symptom clusters and the underlying causes.
Resumo:
A number of reports have demonstrated the importance of the CUB domaincontaining protein 1 (CDCP1) in facilitating cancer progression in animal models and the potential of this protein as a prognostic marker in several malignancies. CDCP1 facilitates metastasis formation in animal models by negatively regulating anoikis, a type of apoptosis triggered by the loss of attachment signalling from cell-cell contacts or cell-extra cellular matrix (ECM) contacts. Due to the important role CDCP1 plays in cancer progression in model systems, it is considered a potential drug target to prevent the metastatic spread of cancers. CDCP1 is a highly glycosylated 836 amino acid cell surface protein. It has structural features potentially facilitating protein-protein interactions including 14 N-glycosylation sites, three CUB-like domains, 20 cysteine residues likely to be involved in disulfide bond formation and five intracellular tyrosine residues. CDCP1 interacts with a variety of proteins including Src family kinases (SFKs) and protein kinase C ä (PKCä). Efforts to understand the mechanisms regulating these interactions have largely focussed on three CDCP1 tyrosine residues Y734, Y743 and Y762. CDCP1-Y734 is the site where SFKs phosphorylate and bind to CDCP1 and mediate subsequent phosphorylation of CDCP1-Y743 and -Y762 which leads to binding of PKCä at CDCP1-Y762. The resulting trimeric protein complex of SFK•CDCP1•PKCä has been proposed to mediate an anti-apoptotic cell phenotype in vitro, and to promote metastasis in vivo. The effect of mutation of the three tyrosines on interactions of CDCP1 with SFKs and PKCä and the consequences on cell phenotype in vitro and in vivo have not been examined. CDCP1 has a predicted molecular weight of ~90 kDa but is usually detected as a protein which migrates at ~135 kDa by Western blot analysis due to its high degree of glycosylation. A low molecular weight form of CDCP1 (LMWCDCP1) of ~70 kDa has been found in a variety of cancer cell lines. The mechanisms leading to the generation of LMW-CDCP1 in vivo are not well understood but an involvement of proteases in this process has been proposed. Serine proteases including plasmin and trypsin are able to proteolytically process CDCP1. In addition, the recombinant protease domain of the serine protease matriptase is also able to cleave the recombinant extracellular portion of CDCP1. Whether matriptase is able to proteolytically process CDCP1 on the cell surface has not been examined. Importantly, proteolytic processing of CDCP1 by trypsin leads to phosphorylation of its cell surface-retained portion which suggests that this event leads to initiation of an intracellular signalling cascade. This project aimed to further examine the biology of CDCP1 with a main of focus on exploring the roles played by CDCP1 tyrosine residues. To achieve this HeLa cells stably expressing CDCP1 or the CDCP1 tyrosine mutants Y734F, Y743F and Y762F were generated. These cell lines were used to examine: • The roles of the tyrosine residues Y734, Y743 and Y762 in mediating interactions of CDCP1 with binding proteins and to examine the effect of the stable expression on HeLa cell morphology. • The ability of the serine protease matriptase to proteolytically process cell surface CDCP1 and to examine the consequences of this event on HeLa cell phenotype and cell signalling in vitro. • The importance of these residues in processes associated with cancer progression in vitro including adhesion, proliferation and migration. • The role of these residues on metastatic phenotype in vivo and the ability of a function-blocking anti-CDCP1 antibody to inhibit metastasis in the chicken embryo chorioallantoic membrane (CAM) assay. Interestingly, biochemical experiments carried out in this study revealed that mutation of certain CDCP1 tyrosine residues impacts on interactions of this protein with binding proteins. For example, binding of SFKs as well as PKCä to CDCP1 was markedly decreased in HeLa-CDCP1-Y734F cells, and binding of PKCä was also reduced in HeLa-CDCP1-Y762F cells. In contrast, HeLa-CDCP1-Y743F cells did not display altered interactions with CDCP1 binding proteins. Importantly, observed differences in interactions of CDCP1 with binding partners impacted on basal phosphorylation of CDCP1. It was found that HeLa-CDCP1, HeLa-CDCP1-Y743F and -Y762F displayed strong basal levels of CDCP1 phosphorylation. In contrast, HeLa-CDCP1-Y734F cells did not display CDCP1 phosphorylation but exhibited constitutive phosphorylation of focal adhesion kinase (FAK) at tyrosine 861. Significantly, subsequent investigations to examine this observation suggested that CDCP1-Y734 and FAK-Y861 are competitive substrates for SFK-mediated phosphorylation. It appeared that SFK-mediated phosphorylation of CDCP1- Y734 and FAK-Y861 is an equilibrium which shifts depending on the level of CDCP1 expression in HeLa cells. This suggests that the level of CDCP1 expression may act as a regulatory mechanism allowing cells to switch from a FAK-Y861 mediated pathway to a CDCP1-Y734 mediated pathway. This is the first time that a link between SFKs, CDCP1 and FAK has been demonstrated. One of the most interesting observations from this work was that CDCP1 altered HeLa cell morphology causing an elongated and fibroblastic-like appearance. Importantly, this morphological change depended on CDCP1- Y734. In addition, it was observed that this change in cell morphology was accompanied by increased phosphorylation of SFK-Y416. This suggests that interactions of SFKs with CDCP1-Y734 increases SFK activity since SFKY416 is critical in regulating kinase activity of these proteins. The essential role of SFKs in mediating CDCP1-induced HeLa cell morphological changes was demonstrated using the SFK-selective inhibitor SU6656. This inhibitor caused reversion of HeLa-CDCP1 cell morphology to an epithelial appearance characteristic of HeLa-vector cells. Significantly, in vitro studies revealed that certain CDCP1-mediated cell phenotypes are mediated by cellular pathways dependent on CDCP1 tyrosine residues whereas others are independent of these sites. For example, CDCP1 expression caused a marked increase in HeLa cell motility that was independent of CDCP1 tyrosine residues. In contrast, CDCP1- induced decrease in HeLa cell proliferation was most prominent in HeLa- CDCP1-Y762F cells, potentially indicating a role for this site in regulating proliferation in HeLa cells. Another cellular event which was identified to require phosphorylation of a particular CDCP1 tyrosine residue is adhesion to fibronectin. It was observed that the CDCP1-mediated strong decrease in adhesion to fibronectin is mostly restored in HeLa-CDCP1-Y743F cells. This suggests a possible role for CDCP1-Y743 in causing a CDCP1-mediated decrease in adhesion. Data from in vivo experiments indicated that HeLa-CDCP1-Y734F cells are more metastic than HeLa-CDCP1 cells in vivo. This indicates that interaction of CDCP1 with SFKs and PKCä may not be required for CDCP1-mediated metastasis formation of HeLa cells in vivo. The metastatic phenotype of these cells may be caused by signalling involving FAK since HeLa-CDCP1- Y734F cells are the only CDCP1 expressing cells displaying constitutive phosphorylation of FAK-Y861. HeLa-CDCP1-Y762F cells displayed a very low metastatic ability which suggests that this CDCP1 tyrosine residue is important in mediating a pro-metastatic phenotype in HeLa cells. More detailed exploration of cellular events occurring downstream of CDCP1-Y734 and -Y762 may provide important insights into the mechanisms altering the metastatic ability of CDCP1 expressing HeLa cells. Complementing the in vivo studies, anti-CDCP1 antibodies were employed to assess whether these antibodies are able to inhibit metastasis of CDCP1 and CDCP1 tyrosine mutants expressing HeLa cells. It was found that HeLa- CDCP1-Y734F cells were the only cell line which was markedly reduced in the ability to metastasise. In contrast, the ability of HeLa-CDCP1, HeLa- CDCP1-Y743F and -Y762F cells to metastasise in vivo was not inhibited. These data suggest a possible role of interactions of CDCP1 with SFKs, occurring at CDCP1-Y734, in preventing an anti-metastatic effect of anti- CDCP1 antibodies in vivo. The proposal that SFKs may play a role in regulating anti-metastatic effects of anti-CDCP1 antibodies was supported by another experiment where differences between HeLa-CDCP1 cells and CDCP1 expressing HeLa cells (HeLa-CDCP1-S) from collaborators at the Scripps Research Institute were examined. It was found that HeLa-CDCP1-S cells express different SFKs than CDCP1 expressing HeLa cells generated for this study. This is important since HeLa-CDCP1-S cells can be inhibited in their metastatic ability using anti-CDCP1 antibodies in vivo. Importantly, these data suggest that further examinations of the roles of SFKs in facilitating anti-metastatic effects of anti-CDCP1 antibodies may give insights into how CDCP1 can be blocked to prevent metastasis in vivo. This project also explored the ability of the serine protease matriptase to proteolytically process cell surface localised CDCP1 because it is unknown whether matriptase can cleave cell surface CDCP1 as it has been reported for other proteases such as trypsin and plasmin. Furthermore, the consequences of matriptase-mediated proteolysis on cell phenotype in vitro and cell signalling were examined since recent reports suggested that proteolysis of CDCP1 leads to its phosphorylation and may initiate cell signalling and consequently alter cell phenotype. It was found that matriptase is able to proteolytically process cell surface CDCP1 at low nanomolar concentrations which suggests that cleavage of CDCP1 by matriptase may facilitate the generation of LWM-CDCP1 in vivo. To examine whether matriptase-mediated proteolysis induced cell signalling anti-phospho Erk 1/2 Western blot analysis was performed as this pathway has previously been examined to study signalling in response to proteolytic processing of cell surface proteins. It was found that matriptase-mediated proteolysis in CDCP1 expressing HeLa cells initiated intracellular signalling via Erk 1/2. Interestingly, this increase in phosphorylation of Erk 1/2 was also observed in HeLa-vector cells. This suggested that initiation of cell signalling via Erk 1/2 phosphorylation as a result of matriptase-mediated proteolysis occurs by pathways independent of CDCP1. Subsequent investigations measuring the flux of free calcium ions and by using a protease-activated receptor 2 (PAR2) agonist peptide confirmed this hypothesis. These data suggested that matriptase-mediated proteolysis results in cell signalling via a pathway induced by the activation of PAR2 rather than by CDCP1. This indicates that induction of cell signalling in HeLa cells as a consequence of matriptase-mediated proteolysis occurs via signalling pathways which do not involve phosphorylation of Erk 1/2. Consequently, it appears that future attempts should focus on the examination of cellular pathways other than Erk 1/2 to elucidate cell signalling initiated by matriptase-mediated proteolytic processing of CDCP1. The data presented in this thesis has explored in vitro and in vivo aspects of the biology of CDCP1. The observations summarised above will permit the design of future studies to more precisely determine the role of CDCP1 and its binding partners in processes relevant to cancer progression. This may contribute to further defining CDCP1 as a target for cancer treatment.
Resumo:
Background Exercise for Health was a pragmatic, randomised, controlled trial comparing the effect of an eight-month exercise intervention on function, treatment-related side effects and quality of life following breast cancer, compared with usual care. The intervention commenced six weeks post-surgery, and two modes of delivering the same intervention was compared with usual care. The purpose of this paper is to describe the study design, along with outcomes related to recruitment, retention and representativeness, and intervention participation. Methods: Women newly diagnosed with breast cancer and residing in a major metropolitan city of Queensland, Australia, were eligible to participate. Consenting women were randomised to a face-to-face-delivered exercise group (FtF, n=67), telephone-delivered exercise group (Tel, n=67) or usual care group (UC, n=60) and were assessed pre-intervention (5-weeks post-surgery), mid-intervention (6 months post-surgery) and 10 weeks post-intervention (12 months post-surgery). Each intervention arm entailed 16 sessions with an Exercise Physiologist. Results: Of 318 potentially eligible women, 63% (n=200) agreed to participate, with a 12-month retention rate of 93%. Participants were similar to the Queensland breast cancer population with respect to disease characteristics, and the randomisation procedure was mostly successful at attaining group balance, with the few minor imbalances observed unlikely to influence intervention effects given balance in other related characteristics. Median participation was 14 (min, max: 0, 16) and 13 (min, max: 3, 16) intervention sessions for the FtF and Tel, respectively, with 68% of those in Tel and 82% in FtF participating in at least 75% of sessions. Discussion: Participation in both intervention arms during and following treatment for breast cancer was feasible and acceptable to women. Future work, designed to inform translation into practice, will evaluate the quality of life, clinical, psychosocial and behavioural outcomes associated with each mode of delivery.
Resumo:
Ghrelin is a peptide hormone that was originally isolated from the stomach as the endogenous ligand for the growth hormone secretagogue receptor (GHSR). Ghrelin has many functions, including the regulation of appetite and gut motility, growth hormone release from the anterior pituitary and roles in the cardiovascular and immune systems. Ghrelin and its receptor are expressed in a number of cancers and cancer cell lines and may play a role in processes associated with cancer progression, including cell proliferation, apoptosis, and cell invasion and migration.
Resumo:
The ‘anti- of ‘(Anti)Queer’ is a queer anti. In particle physics, a domain of science which was for a long time peddled as ultimately knowable, rational and objective, the postmodern turn has made everything queer (or chaotic, as the scientific version of this turn is perhaps more commonly named). This is a world where not only do two wrongs not make a right, but a negative and positive do not calmly cancel each other out to leave nothing, as mathematics might suggest. When matter meets with anti-matter, the resulting explosion can produce not only energy - heat and light? - but new matter. We live in a world whose very basics are no longer the electron and the positron, but an ever proliferating number of chaotic, unpredictable - queer? - subatomic particles. Some are ‘charmed’, others merely ‘strange’ . Weird science indeed. The ‘Anti-’ of ‘Anti-queer’ does not place itself neatly into binaries. This is not a refutation of all that queer has been or will be. It is explicitly a confrontation, a challenge, an attempt to take seriously not only the claims made for queer but the potent contradictions and silences which stand proudly when any attempt is made to write a history of the term. Specifically, ‘Anti-Queer’ is not Beyond Queer, the title of Bruce Bawer’s 1996 book which calmly and self-confidently explains the failings of queer, extols a return to a liberal political theory of cultural change and places its own marker on queer as a movement whose purpose has been served. We are not Beyond Queer. And if we are Anti-Queer, it is only to challenge those working in the arena to acknowledge and work with some of the facts of the movement’s history whose productivity has been erased with a gesture which has, proved, bizarrely, to be reductive and homogenising.
Resumo:
Background Concern about skin cancer is a common reason for people from predominantly fair-skinned populations to present to primary care doctors. Objectives To examine the frequency and body-site distribution of malignant, pre-malignant and benign pigmented skin lesions excised in primary care. Methods This prospective study conducted in Queensland, Australia, included 154 primary care doctors. For all excised or biopsied lesions, doctors recorded the patient's age and sex, body site, level of patient pressure to excise, and the clinical diagnosis. Histological confirmation was obtained through pathology laboratories. Results Of 9650 skin lesions, 57·7% were excised in males and 75·0% excised in patients ≥50years. The most common diagnoses were basal cell carcinoma (BCC) (35·1%) and squamous cell carcinoma (SCC) (19·7%). Compared with the whole body, the highest densities for SCC, BCC and actinic keratoses were observed on chronically sun-exposed areas of the body including the face in males and females, the scalp and ears in males, and the hands in females. The density of BCC was also high on intermittently or rarely exposed body sites. Females, younger patients and patients with melanocytic naevi were significantly more likely to exert moderate/high levels of pressure on the doctor to excise. Conclusions More than half the excised lesions were skin cancer, which mostly occurred on the more chronically sun-exposed areas of the body. Information on the type and body-site distribution of skin lesions can aid in the diagnosis and planned management of skin cancer and other skin lesions commonly presented in primary care.
Resumo:
In silico experimental modeling of cancer involves combining findings from biological literature with computer-based models of biological systems in order to conduct investigations of hypotheses entirely in the computer laboratory. In this paper, we discuss the use of in silico modeling as a precursor to traditional clinical and laboratory research, allowing researchers to refine their experimental programs with an aim to reducing costs and increasing research efficiency. We explain the methodology of in silico experimental trials before providing an example of in silico modeling from the biomathematical literature with a view to promoting more widespread use and understanding of this research strategy.
Resumo:
In pre-Fitzgerald Queensland, the existence of corruption was widely known but its extent and modes of operation were not fully evident. The Fitzgerald Report identified the need for reform of the structure, procedures and efficiency in public administration in Queensland. What was most striking in the Queensland reform process was that a new model for combatting corruption had been developed. Rather than rely upon a single law and a single institution, existing institutions were strengthened and new institutions were introduced to create a set of mutually supporting and mutually checking institutions, agencies and laws that jointly sought to improve governmental standards and combat corruption. Some of the reforms were either unique to Queensland or very rare. One of the strengths of this approach was that it avoided creating a single over-arching institution to fight corruption. There are many powerful opponents of reform. Influential institutions and individuals resist any interference with their privileges. In order to cause a mass exodus from an entrenched corruption system, a seminal event or defining process is needed to alter expectations and incentives that are sufficient to encourage significant numbers of individuals to desert the corruption system and assist the integrity system in exposing and destroying it. The Fitzgerald Inquiry was such an event. This article also briefly addresses methods for destroying national corruption systems where they emerge and exist.
Resumo:
In humans, more than 30,000 chimeric transcripts originating from 23,686 genes have been identified. The mechanisms and association of chimeric transcripts arising from chromosomal rearrangements with cancer are well established, but much remains unknown regarding the biogenesis and importance of other chimeric transcripts that arise from nongenomic alterations. Recently, a SLC45A3–ELK4 chimera has been shown to be androgen-regulated, and is overexpressed in metastatic or high-grade prostate tumors relative to local prostate cancers. Here, we characterize the expression of a KLK4 cis sense–antisense chimeric transcript, and show other examples in prostate cancer. Using non-protein-coding microarray analyses, we initially identified an androgen-regulated antisense transcript within the 3′ untranslated region of the KLK4 gene in LNCaP cells. The KLK4 cis-NAT was validated by strand-specific linker-mediated RT-PCR and Northern blotting. Characterization of the KLK4 cis-NAT by 5′ and 3′ rapid amplification of cDNA ends (RACE) revealed that this transcript forms multiple fusions with the KLK4 sense transcript. Lack of KLK4 antisense promoter activity using reporter assays suggests that these transcripts are unlikely to arise from a trans-splicing mechanism. 5′ RACE and analyses of deep sequencing data from LNCaP cells treated ±androgens revealed six high-confidence sense–antisense chimeras of which three were supported by the cDNA databases. In this study, we have shown complex gene expression at the KLK4 locus that might be a hallmark of cis sense–antisense chimeric transcription.