944 resultados para Unsaturated polyester resin
Resumo:
OBJECTIVES: The objectives of this in vitro study were (1) to assess the bond strength of the universal cement RelyX Unicem to dentin and to compare it with three conventional resin cements, (2) to test the influence of aging on their bonding capacity and (3) to test the influence of the operator on bonding quality by performing the same test in two different centers. METHODS: 160 third molars, divided into 80 for tests at the University of Zurich (Z) and 80 for tests at the University of Berne (B), were assigned to 2 x 8 subgroups of 10 teeth each. The specimens were prepared with the corresponding bonding agents and acrylic rods were luted either with RelyX Unicem (U), RelyX ARC (A), Multilink (M) or Panavia 21 (P). All specimens were stored in water for 24h (W) and half of the specimens were subjected to 1500 cycles of thermocycling (5 degrees C and 55 degrees C) (T). Bond strength was measured by means of a shear test. RESULTS: After water storage RelyX Unicem exhibited lowest bond strength (UWZ: 9.2+/-1.6 MPa, UWB: 9.9+/-1.2 MPa, AWZ: 15.3+/-6.0 MPa, AWB: 12.2+/-4.3 MPa, MWZ: 15.6+/-3.3 MPa, MWB: 12.4 MPa+/-2.4, PWZ: 13.4+/-2.9 MPa, PWB: 14.9+/-2.6 MPa). Thermocycling affected the bonding performance of all four cements. However, bond strength of RelyX Unicem was least influenced by thermocycling (UTZ: 9.4+/-2.9 MPa, UTB: 8.6+/-1.3 MPa, ATZ: 11.4+/-6.3 MPa, ATB: 13.3+/-3.7 MPa, MTZ: 15.4+/-3.1 MPa, MTB: 10.3+/-2.4 MPa, PTZ: 11.1+/-2.8 MPa, PTB: 11.3+/-2.8 MPa). SIGNIFICANCE: Although the bond strength of RelyX Unicem to dentin was lower in comparison to RelyX ARC, Multilink and Panavia 21, its bond strength was less sensitive to variations in handling and aging.
Resumo:
Two new cyclohexenones (antheminones A and B) and a new cyclohexanone, (antheminone C) along with five known compounds were isolated from the leaves of Anthemis maritima L. The structures were mainly deduced from extensive 1D and 2D NMR spectroscopy and mass spectrometry. The new compounds were tested in vitro for their cytotoxic activity against adherent and non-adherent cancer cell lines. Antheminones A and C exhibited significant antiproliferative activity against leukemia cells with IC(50) values ranging from 3.2 to 14 microM.
Temporary zinc oxide-eugenol cement: eugenol quantity in dentin and bond strength of resin composite
Resumo:
Uptake of eugenol from eugenol-containing temporary materials may reduce the adhesion of subsequent resin-based restorations. This study investigated the effect of duration of exposure to zinc oxide–eugenol (ZOE) cement on the quantity of eugenol retained in dentin and on the microtensile bond strength (μTBS) of the resin composite. The ZOE cement (IRM Caps) was applied onto the dentin of human molars (21 per group) for 1, 7, or 28 d. One half of each molar was used to determine the quantity of eugenol (by spectrofluorimetry) and the other half was used for μTBS testing. The ZOE-exposed dentin was treated with either OptiBond FL using phosphoric acid (H3PO4) or with Gluma Classic using ethylenediaminetetraacetic acid (EDTA) conditioning. One group without conditioning (for eugenol quantity) and two groups not exposed to ZOE (for eugenol quantity and μTBS testing) served as controls. The quantity of eugenol ranged between 0.33 and 2.9 nmol mg−1 of dentin (median values). No effect of the duration of exposure to ZOE was found. Conditioning with H3PO4 or EDTA significantly reduced the quantity of eugenol in dentin. Nevertheless, for OptiBond FL, exposure to ZOE significantly decreased the μTBS, regardless of the duration of exposure. For Gluma Classic, the μTBS decreased after exposure to ZOE for 7 and 28 d. OptiBond FL yielded a significantly higher μTBS than did Gluma Classic. Thus, ZOE should be avoided in cavities later to be restored with resin-based materials.
Resumo:
OBJECTIVES The aim of this study was to investigate micromechanical properties of five dual-curing resin cements after different curing modes including light curing through glass ceramic materials. MATERIALS AND METHODS Vickers hardness (VH) and indentation modulus (Y HU) of Panavia F2.0, RelyX Unicem 2 Automix, SpeedCEM, BisCem, and BeautiCem SA were measured after 1 week of storage (37 °C, 100 % humidity). The resin cements were tested following self-curing or light curing with the second-generation light-emitting diode (LED) curing unit Elipar FreeLight 2 in Standard Mode (1,545 mW/cm(2)) or with the third-generation LED curing unit VALO in High Power Mode (1,869 mW/cm(2)) or in XtraPower Mode (3,505 mW/cm(2)). Light curing was performed directly or through glass ceramic discs of 1.5 or 3 mm thickness of IPS Empress CAD or IPS e.max CAD. VH and Y HU were analysed with Kruskal-Wallis tests followed by pairwise Wilcoxon rank sum tests (α = 0.05). RESULTS RelyX Unicem 2 Automix resulted in the highest VH and Y HU followed by BeautiCem SA, BisCem, SpeedCEM, and finally Panavia F2.0. Self-curing of RelyX Unicem 2 Automix and SpeedCEM lowered VH and Y HU compared to light curing whereas self-curing of Panavia F2.0, BisCem, and BeautiCem SA led to similar or significantly higher VH and Y HU compared to light curing. Generally, direct light curing resulted in similar or lower VH and Y HU compared to light curing through 1.5-mm-thick ceramic discs. Light curing through 3-mm-thick discs of IPS e.max CAD generally reduced VH and Y HU for all resin cements except SpeedCEM, which was the least affected by light curing through ceramic discs. CONCLUSIONS The resin cements responded heterogeneously to changes in curing mode. The applied irradiances and light curing times adequately cured the resin cements even through 1.5-mm-thick ceramic discs. CLINICAL RELEVANCE When light curing resin cements through thick glass ceramic restorations, clinicians should consider to prolong the light curing times even with LED curing units providing high irradiances.
Resumo:
Objectives The aim of this study was to measure the degree of conversion (DC) of five dual-curing resin cements after different curing modes with a second- and a third-generation light-emitting diode (LED) curing unit. Additionally, irradiance of both light curing units was measured at increasing distances and through discs of two glass ceramics for computer-aided design/manufacturing (CAD/CAM). Materials and methods Irradiance and spectra of the Elipar FreeLight 2 (Standard Mode (SM)) and of the VALO light curing unit (High Power Mode (HPM) and Xtra Power Mode (XPM)) were measured with a MARC radiometer. Irradiance was measured at increasing distances (control) and through discs (1.5 to 6 mm thickness) of IPS Empress CAD and IPS e.max CAD. DC of Panavia F2.0, RelyX Unicem 2 Automix, SpeedCEM, BisCem, and BeautiCem SA was measured with an attenuated total reflectance–Fourier transform infrared spectrometer when self-cured (negative control) or light cured in SM for 40 s, HPM for 32 s, or XPM for 18 s. Light curing was performed directly (positive control) or through discs of either 1.5- or 3-mm thickness of IPS Empress CAD or IPS e.max CAD. DC was analysed with Kruskal–Wallis tests followed by pairwise Wilcoxon rank sum tests (α = 0.05). Results Maximum irradiances were 1,545 mW/cm2 (SM), 2,179 mW/cm2 (HPM), and 4,156 mW/cm2 (XPM), and all irradiances decreased by >80 % through discs of 1.5 mm, ≥95 % through 3 mm, and up to >99 % through 6 mm. Generally, self-curing resulted in the lowest DC. For some cements, direct light curing did not result in higher DC compared to when light cured through ceramic discs. For other cements, light curing through ceramic discs of 3 mm generally reduced DC. Conclusions Light curing was favourable for dual-curing cements. Some cements were more susceptible to variations in curing mode than others. Clinical relevance When light curing a given cement, the higher irradiances of the third-generation LED curing unit resulted in similar DC compared to the second-generation one, though at shorter light curing times.
Resumo:
OBJECTIVES To evaluate the effect of a tin-containing fluoride (Sn/F) mouth rinse on microtensile bond strength (μTBS) between resin composite and erosively demineralised dentin. MATERIALS AND METHODS Dentin of 120 human molars was erosively demineralised using a 10-day cyclic de- and remineralisation model. For 40 molars, the model comprised erosive demineralisation only; for another 40, the model included treatment with a NaF solution; and for yet another 40, the model included treatment with a Sn/F mouth rinse. In half of these molars (n = 20), the demineralised organic matrix was continuously removed by collagenase. Silicon carbide paper-ground, non-erosively demineralised molars served as control (n = 20). Subsequently, μTBS of Clearfil SE/Filtek Z250 to the dentin was measured, and failure mode was determined. Additionally, surfaces were evaluated using SEM and EDX. RESULTS Compared to the non-erosively demineralised control, erosive demineralisation resulted in significantly lower μTBS regardless of the removal of demineralised organic matrix. Treatment with NaF increased μTBS, but the level of μTBS obtained by the non-erosively demineralised control was only reached when the demineralised organic matrix had been removed. The Sn/F mouth rinse together with removal of demineralised organic matrix led to significantly higher µTBS than did the non-erosively demineralised control. The Sn/F mouth rinse yielded higher μTBS than did the NaF solution. CONCLUSIONS Treatment of erosively demineralised dentin with a NaF solution or a Sn/F mouth rinse increased the bond strength of resin composite. CLINICAL RELEVANCE Bond strength of resin composite to eroded dentin was not negatively influenced by treatment with a tin-containing fluoride mouth rinse.
Resumo:
Neutropenic enterocolitis is a potentially fatal complication of myeloablative chemotherapy in patients with acute myeloid leukemia. Omega-3 polyunsaturated fatty acids (PUFA) are precursors of potent anti-inflammatory prostaglandins. Our aim was to explore the safety and effectiveness of omega-3 PUFA added to parenteral nutrition in protecting leukemia patients from severe enterocolitis. Fourteen patients with acute myeloid leukemia who received omega-3 PUFA in a Phase II trial were compared with 66 consecutive control patients not getting this intervention. We performed crude and adjusted comparisons, using inverse probability of treatment weighting for adjusted analysis, and blind outcome assessment to minimize assessor bias. Primary outcome was severe enterocolitis (≥Grade 3). The crude odds ratio of Grade 3 colitis or higher was 1.36 (95% CI 0.37 to 4.96, P = 0.64), and the adjusted odds ratio was 0.79 (95% CI 0.35 to 1.78, P = 0.57). There was little evidence to suggest differences between groups in serious adverse events and overall mortality. Our results provide little evidence that addition of omega-3 PUFA is beneficial in this condition. Routine treatment with omega-3 PUFA is currently not warranted.
Resumo:
Transport of volatile hydrocarbons in soils is largely controlled by interactions of vapours with the liquid and solid phase. Sorption on solids of gaseous or dissolved comPounds may be important. Since the contact time between a chemical and a specific sorption site can be rather short, kinetic or mass-transfer resistance effects may be relevant. An existing mathematical model describing advection and diffusion in the gas phase and diffusional transport from the gaseous phase into an intra-aggregate water phase is modified to include linear kinetic sorption on ps-solid and water-solid interfaces. The model accounts for kinetic mass transfer between all three phases in a soil. The solution of the Laplace-transformed equations is inverted numerically. We performed transient column experiments with 1,1,2-Trichloroethane, Trichloroethylene, and Tetrachloroethylene using air-dry solid and water-saturated porous glass beads. The breakthrough curves were calculated based on independently estimated parameters. The model calculations agree well with experimental data. The different transport behaviour of the three compounds in our system primarily depends on Henry's constants.
Resumo:
Safe disposal of toxic wastes in geologic formations requires minimal water and gas movement in the vicinity of storage areas, Ventilation of repository tunnels or caverns built in solid rock can desaturate the near field up to a distance of meters from the rock surface, even when the surrounding geological formation is saturated and under hydrostatic pressures. A tunnel segment at the Grimsel test site located in the Aare granite of the Bernese Alps (central Switzerland) has been subjected to a resaturation and, subsequently, to a controlled desaturation, Using thermocouple psychrometers (TP) and time domain reflectometry (TDR), the water potentials psi and water contents theta were measured within the unsaturated granodiorite matrix near the tunnel wall at depths between 0 and 160 cm. During the resaturation the water potentials in the first 30 cm from the rock surface changed within weeks from values of less than -1.5 MPa to near saturation. They returned to the negative initial values during desaturation, The dynamics of this saturation-desaturation regime could be monitored very sensitively using the thermocouple psychrometers, The TDR measurements indicated that water contents changed dose to the surface, but at deeper installation depths the observed changes were within the experimental noise. The field-measured data of the desaturation cycle were used to test the predictive capabilities of the hydraulic parameter functions that were derived from the water retention characteristics psi(theta) determined in the laboratory. A depth-invariant saturated hydraulic conductivity k(s) = 3.0 x 10(-11) m s(-1) was estimated from the psi(t) data at all measurement depths, using the one-dimensional, unsaturated water flow and transport model HYDRUS Vogel er al., 1996, For individual measurement depths, the estimated k(s) varied between 9.8 x 10(-12) and 6.1 x 10(-11) The fitted k(s) values fell within the range of previously estimated k(s) for this location and led to a satisfactory description of the data, even though the model did not include transport of water vapor.
Resumo:
A water desaturation zone develops around a tunnel in water-saturated rock when the evaporative water loss at the rock surface is larger than the water flow from the surrounding saturated region of restricted permeability. We describe the methods with which such water desaturation processes in rock materials can be quantified. The water retention characteristic theta(psi) of crystalline rock samples was determined with a pressure membrane apparatus. The negative water potential, identical to the capillary pressure, psi, below the tensiometric range (psi < -0.1 MPa) can be measured with thermocouple psychrometers (TP), and the volumetric water contents, theta, by means of time domain reflectometry (TDR). These standard methods were adapted for measuring the water status in a macroscopically unfissured granodiorite with a total porosity of approximately 0.01. The measured water retention curve of granodiorite samples from the Grimsel test site (central Switzerland) exhibits a shape which is typical for bimodal pore size distributions. The measured bimodality is probably an artifact of a large surface ratio of solid/voids. The thermocouples were installed without a metallic screen using the cavity drilled into the granodiorite as a measuring chamber. The water potentials observed in a cylindrical granodiorite monolith ranged between -0.1 and -3.0 MPa; those near the wall in a ventilated tunnel between -0.1 and -2.2 MPa. Two types of three-rod TDR Probes were used, one as a depth probe inserted into the rock, the other as a surface probe using three copper stripes attached to the surface for detecting water content changes in the rock-to-air boundary. The TDR signal was smoothed with a low-pass filter, and the signal length determined based on the first derivative of the trace. Despite the low porosity of crystalline rock these standard methods are applicable to describe the unsaturated zone in solid rock and may also be used in other consolidated materials such as concrete.
Resumo:
Geological and pedological processes rarely form isotropic media as is usually assumed in transport studies. Anisotropy at the Darcy or field scale may be detected directly by measuring flow parameters or may become indirectly evident from movement and shape of solute plumes. Anisotropic behavior of a soil at one scale may, in many cases, be related to the presence of lower-scale directional structures. Miller similitude with different pore-scale geometries of the basic element is used to model macroscopic flow and transport behavior. Analytical expressions for the anisotropic conductivity tensor are derived based on the dynamic law that governs the flow problem at the pore scale. The effects of anisotropy on transport parameters are estimated by numerical modeling.
Resumo:
OBJECTIVE To investigate how the modulus of elasticity of resin composites influences marginal quality in restorations submitted to thermocyclic and mechanical loading. METHODS Charisma, Filtek Supreme XTE and Grandio were selected as they were found to possess different moduli of elasticity but quite similar polymerization contraction. MOD cavities (n=30) were prepared in extracted premolars, restored and then subjected to thermocyclic and mechanical loading. Marginal quality of the restorations before and after loading was analyzed on epoxy replicas under a scanning electron microscope. The percentage of gap-free margins and occurrence of paramarginal fractures were registered. Modulus of elasticity and polymerization contraction were analyzed with parametric and margins with nonparametric ANOVA and post hoc Tukey HSD or Wilcoxon rank-sum tests, respectively. The number of paramarginal fractures was analyzed with exact Fisher tests (α=0.05). RESULTS Grandio demonstrated significantly more gap-free enamel margins than Charisma and Filtek Supreme XTE, before and after loading (p<0.01), whereas there was no difference between Charisma and Filtek Supreme XTE (p>0.05). No significant effect of resin composite (p=0.81) on the quality of dentine margins was observed, before or after loading. Deterioration of all margins was evident after loading (p<0.0001). More paramarginal enamel fractures were observed after loading in teeth restored with Grandio when compared to Charisma (p=0.008). CONCLUSIONS The resin composite with the highest modulus of elasticity resulted in the highest number of gap-free enamel margins but with an increased incidence of paramarginal enamel fractures. CLINICAL SIGNIFICANCE The results from this study suggest that the marginal quality of restorations can be improved by the selection of a resin composite with modulus of elasticity close to that of dentine, although an increase in paramarginal enamel fractures can result as a consequence.
Resumo:
OBJECTIVES To investigate the influence of increment thickness on Vickers microhardness (HV) and shear bond strength (SBS) to dentin of a conventional and four bulk fill resin composites. METHODS HV and SBS were determined on specimens of the conventional resin composite Filtek Supreme XTE (XTE) and the bulk fill resin composites SDR (SDR), Filtek Bulk Fill (FBF), x-tra fil (XFIL), and Tetric EvoCeram Bulk Fill (TEBF) after 24h storage. HV was measured either as profiles at depths up to 6mm or at the bottom of 2mm/4mm/6mm thick resin composite specimens. SBS of 2mm/4mm/6mm thick resin composite increments was measured to dentin surfaces of extracted human molars treated with the adhesive system OptiBond FL, and the failure mode was stereomicroscopically determined at 40× magnification. HV profiles and failure modes were descriptively analysed whereas HV at the bottom of resin composite specimens and SBS were statistically analysed with nonparametric ANOVA followed by Wilcoxon rank sum tests (α=0.05). RESULTS HV profiles (medians at 2mm/4mm/6mm): XTE 105.6/88.8/38.3, SDR 34.0/35.5/36.9, FBF 36.4/38.7/37.1, XFIL 103.4/103.9/101.9, TEBF 63.5/59.7/51.9. HV at the bottom of resin composite specimens (medians at 2mm/4mm/6mm): XTE (p<0.0001) 105.5>85.5>31.1, SDR (p=0.10) 25.8=21.9=26.0, FBF (p=0.16) 26.6=25.3=28.9, XFIL (p=0.18) 110.5=107.2=101.9, TEBF (p<0.0001) 63.0>54.9>48.2. SBS (MPa, medians at 2mm/4mm/6mm): XTE (p<0.0001) 23.9>18.9=16.7, SDR (p=0.26) 24.6=22.7=23.4, FBF (p=0.11) 21.4=20.3=22.0, x-tra fil (p=0.55) 27.0=24.0=23.6, TEBF (p=0.11) 21.0=20.7=19.0. The predominant SBS failure mode was cohesive failure in dentin. SIGNIFICANCE At increasing increment thickness, HV and SBS decreased for the conventional resin composite but generally remained constant for the bulk fill resin composites.
Resumo:
INTRODUCTION Recent meta-analyses of the outcome of apical surgery using modern techniques including microsurgical principles and high-power magnification have yielded higher rates of healing. However, the information is mainly based on 1- to 2-year follow-up data. The present prospective study was designed to re-examine a large sample of teeth treated with apical surgery after 5 years. METHODS Patients were recalled 5 years after apical surgery, and treated teeth were classified as healed or not healed based on clinical and radiographic examination. (The latter was performed independently by 3 observers). Two different methods of root-end preparation and filling (primary study parameters) were to be compared (mineral trioxide aggregate [MTA] vs adhesive resin composite [COMP]) without randomization. RESULTS A total of 271 patients and teeth from a 1-year follow-up sample of 339 could be re-examined after 5 years (dropout rate = 20.1%). The overall rate of healed cases was 84.5% with a significant difference (P = .0003) when comparing MTA (92.5%) and COMP (76.6%). The evaluation of secondary study parameters yielded no significant difference for healing outcome when comparing subcategories (ie, sex, age, type of tooth treated, post/screw, type of surgery). CONCLUSIONS The results from this prospective nonrandomized clinical study with a 5-year follow-up of 271 teeth indicate that MTA exhibited a higher healing rate than COMP in the longitudinal prognosis of root-end sealing.