961 resultados para United States -- Foreign relations -- 1977-1981.
Resumo:
The cephalopods found in neritic waters of the northeastern United States include myopsid and oegopsid squids, sepiolid squids, and octopods. A key with diagnostic illustrations is provided to aid in identification of the eleven species common in the neritic waters between Cape Hatteras and Nova Scotia; included also is information on two oceanic species that occur over the continental shelf in this area and that can be confused with similar-looking neritic species. Other sections comprise a glossary of taxonomic characters used for identification of these species, an annotated systematic checklist, and checklists of the 89 other oceanic species and 18 Carolinian and subtropical neritic species that might occur occasionally off the northeastern United States. (PDF file contains 30 pages.)
Resumo:
The echinoid fauna from littoral to abyssal depths off the northeastern United States (Cape Hatteras, NC, to northern Nova Scotia) comprises 31 species, in 26 genera and 19 families. An introduction to the external morphology, distribution, and natural history is given along with an illustrated key to the species, an annotated systematic list, and an index. The fauna Includes 17 species with wide-ranging distributions on continental slopes or abyssal plains. The remaining 14 species occur in shallower waters on the continental shelf or upper slope. Of these, eight are tropical in distribution with their northern range extending to the northeastern United States and three are mainly boreal with the northeastern United States at the southern limit of their range. Two species occur only off the eastern United States and one species is cosmopolitan. (PDF file contains 33 pages.)
Resumo:
Common shrimp trawl designs employed in the southeastern United States shrimp fishery are the flat, balloon, semiballoon, jib, and super X-3. Recent innovations in trawl design and rigging, including the twin trawl rigging and tongue trawl design, have improved the efficiency of shrimp trawling gear. A description of the construction techniques for the different designs indicate differences which affect gear performance. Measurements of horizontal spread and vertical opening for 76 trawl configurations indicate the relative efficiencies of the different designs. Maximum horizontal spreading efficiency was achieved by the "twin" and "tongue" trawl designs followed by the super X-3, jib, balloon, and semiballoon designs. Designs having the greatest vertical openings were the tongue and flat trawl designs followed by the semiballoon. Maximum total gape dimension was demonstrated by the "Mongoose" tongue trawl. Comparison of trawl spreading efficiency and door area to headrope length ratio indicates that a range of 70-80 in square (per door) of door area is required for each foot of trawl headrope length for maximum efficiency with conventional trawl designs and 66-75 in square per foot of headrope for tongue trawl designs. (PDF file contains 18 pages.)
Resumo:
Climate change has rapidly emerged as a significant threat to coastal areas around the world. While uncertainty regarding distribution, intensity, and timescale inhibits our ability to accurately forecast potential impacts, it is widely accepted that changes in global climate will result in a variety of significant environmental, social, and economic impacts. Coastal areas are particularly vulnerable to the effects of climate change and the implications of sea-level rise, and coastal communities must develop the capacity to adapt to climate change in order to protect people, property, and the environment along our nation’s coasts. The U.S. coastal zone is highly complex and variable, consisting of several regions that are characterized by unique geographic, economic, social and environmental factors. The degree of risk and vulnerability associated with climate change can vary greatly depending on the exposure and sensitivity of coastal resources within a given area. The ability of coastal communities to effectively adapt to climate change will depend greatly on their ability to develop and implement feasible strategies that address unique local and regional factors. A wide variety of resources are available to assist coastal states in developing their approach to climate change adaptation. However, given the complex and variable nature of the U.S. coastline, it is unlikely that a single set of guidelines can adequately address the full range of adaptation needs at the local and regional levels. This panel seeks to address some of the unique local and regional issues facing coastal communities throughout the U.S. including anticipated physical, social, economic and environmental impacts, existing resources and guidelines for climate change adaptation, current approaches to climate change adaptation planning, and challenges and opportunities for developing adaptation strategies. (PDF contains 4 pages)
Resumo:
As the impacts and potential of climate change are realized at the governance level, states are moving towards adaptation strategies that include greater regulatory restrictions on development within coastal zones. The purpose of this paper is to outline the impacts of existing and planned regulatory mechanisms on the Fifth Amendment to the United States Constitution, which prevents the government taking of private property for public use without just compensation. A short history of regulatory takings is explained, and the potential legal issues surrounding mitigation and adaptation measures for coastal communities are discussed. The goal is to gain an understanding of the legal issues that must be resolved by governments to effectively deal with regulatory takings claims as coastal mitigation and adaptation plans are implemented. (PDF contains 3 pages)
Resumo:
Rivers in Teesdale and its fish population have been monitored for several years. This report briefly describes the life cycle of British salmonid fishes and indicates the main ways in which this life cycle is influenced by discharge and related effects. Some highlights of the research results for 1977 - 1981 are briefly stated and proposals for future research are listed. Some practical implications of the results are discussed. (PDF contains 34 pages)
Resumo:
Some of the metallogenic provinces of the southwestern United States and northern Mexico are defined by the geographic distribution of trace elements in the primary sulfide minerals chalcopyrite and sphalerite. The elements investigated include antimony, arsenic, bismuth, cadmium, cobalt, gallium, germanium, indium, manganese, molybdenum, nickel, silver, tellurium, thallium, and tin. Of these elements, cobalt, gallium, germanium, indium, nickel, silver, and tin exhibit the best defined geographic distribution.
The data indicate that chalcopyrite is the preferred host for tin and perhaps molybdenum; sphalerite is the preferred host for cadmium, gallium, germanium, indium, and manganese; galena is the preferred host for antimony, bismuth, silver, tellurium, and thallium; and pyrite is the preferred host for cobalt, nickel, and perhaps arsenic. With respect to the two minerals chalcopyrite and sphalerite, antimony, arsenic, molybdenum, nickel, silver, and tin prefer chalcopyrite; and bismuth, cadmium, cobalt, gallium, germanium, indium, manganese, and thallium prefer sphalerite. This distribution probably is the result of the interaction of several factors, among which are these: the various radii of the elements, the association due to chemical similarities of the major and trace elements, and the degree of ionic versus covalent and metallic character of the metal-sulfur bonds in chalcopyrite and sphalerite. The type of deposit, according to a temperature classification, appears to be of minor importance in determining the trace element content of chalcopyrite and sphalerite.
A preliminary investigation of large single crystals of sphalerite and chalcopyrite indicates that the distribution within a single crystal of some elements such as cadmium in sphalerite and indium and silver in chalcopyrite is relatively uniform, whereas the distribution of some other elements such as cobalt and manganese in sphalerite is somewhat less uniform and the distribution of tin in sphalerite is extremely erratic. The variations in trace element content probably are due largely to variations in the composition of the fluids during the growth of the crystals, but the erratic behavior of tin in sphalerite perhaps is related to the presence of numerous cavities and inclusions in the crystal studied.
Maps of the geographic distribution of trace elements in chalcopyrite and sphalerite exhibit three main belts of greater than average trace element content, which are called the Eastern, Central, and Western belts. These belts are consistent in trend and position with a beltlike distribution of copper, gold, lead, zinc, silver, and tungsten deposits and with most of the major tectonic features. However, there appear to be no definite time relationships, for as many as four metallogenic epochs, from Precambrian to late Tertiary, are represented by ore deposits within the Central belt.
The evidence suggests that the beltlike features have a deep seated origin, perhaps in the sub-crust or outer parts of the mantle, and that the deposits within each belt might be genetically related through a beltlike compositional heterogeneity in the source regions of the ores. Hence, the belts are regarded as metallogenic provinces.
Resumo:
Idioma: Inglés Abstract: This project focuses on two indicators of prices, the GDP deflator and the consumer price index (CPI), and analyzes the differences and similarities they present. These price indexes have been chosen taking into account its great representativeness and importance to economic and social level, and its direct relationship to the overall functioning of the economy and, in particular, inflation. It should be also mentioned that this study was conducted for cases of the euro area and the United States, as the impact of these economies in the economic and social situation at international level is very significant.
Resumo:
This paper summarizes current information on the American shad, Alosa sapidissima, and describes the species and its fishery. Emphasis is placed on (1) life history of the fish, (2) condition of the fishery by State and water areas in 1960 compared to 1896 when the last comprehensive description was made, (3) factors responsible for decline in abundance, and (4) management measures. The shad fishery has changed little over the past three-quarters of a century, except in magnitude of yield. Types of shad-fishing gear have remained relatively unchanged, but many improvements have been made in fishing techniques, mostly to achieve economy. In 1896 the estimated catch was more than 50 million pounds. New Jersey ranked first in production with about 14 million pounds, and Virginia second with 11 million pounds. In 1960 the estimated catch was slightly more than 8 million pounds. Maryland ranked first in production with slightly more than 1.5 million pounds, Virginia second with slightly less than 1.4 million pounds, and North Carolina third with about 1.3 million pounds. Biological and economic factors blamed for the decline in shad abundance, such as physical changes in the environment, construction of dams, pollution, over-fishing, and natural cycles of abundance, are discussed. Also discussed are methods used for the rehabilitation and management of the fishery, such as artificial propagation, installation of fish-passage facilities at impoundments, and fishing regulations. With our present knowledge, we can manage individual shad populations; but, we probably cannot restore the shad to its former peak of abundance.
Resumo:
The aquarium trade and other wildlife consumers are at a crossroads forced by threats from global climate change and other anthropogenic stressors that have weakened coastal ecosystems. While the wildlife trade may put additional stress on coral reefs, it brings income into impoverished parts of the world and may stimulate interest in marine conservation. To better understand the influence of the trade, we must first be able to quantify coral reef fauna moving through it. Herein, we discuss the lack of a data system for monitoring the wildlife aquarium trade and analyze problems that arise when trying to monitor the trade using a system not specifically designed for this purpose. To do this, we examined an entire year of import records of marine tropical fish entering the United States in detail, and discuss the relationship between trade volume, biodiversity and introduction of non-native marine fishes. Our analyses showed that biodiversity levels are higher than previous estimates. Additionally, more than half of government importation forms have numerical or other reporting discrepancies resulting in the overestimation of trade volumes by 27%. While some commonly imported species have been introduced into the coastal waters of the USA (as expected), we also found that some uncommon species in the trade have also been introduced. This is the first study of aquarium trade imports to compare commercial invoices to government forms and provides a means to, routinely and in real time, examine the biodiversity of the trade in coral reef wildlife species.
Resumo:
Commercial fisheries that are managed with minimum size limits protect small fish of all ages and may affect size-selective mortality by the differential removal of fast growing fish. This differential removal may decrease the average size at age, maturation, or sexual transition of the exploited population. When fishery-independent data are not available, a comparison of life history parameters of landed with those of discarded fish (by regulation) will indicate if differential mortality is occurring with the capture of young but large fish (fast growing phenotypes). Indications of this differential size-selective mortality would include the following: the discarded portion of the target fish would have similar age ranges but smaller sizes at age, maturation, and sexual transition as that of landed fish. We examined three species with minimum size limits but different exploitation histories. The known heavily exploited species (Rhomboplites aurorubens [vermilion snapper] and Pagrus pagrus [red porgy]) show signs of this differential mortality. Their landed catch includes many young, large fish, whereas discarded fish had a similar age range and mean ages but smaller sizes at age than the landed fish. The unknown exploited species, Mycteroperca phenax (scamp), showed no signs of differential mortality due to size-selective fishing. Landed catch consisted of old, large fish and discarded scamp had little overlap in age ranges, had significantly different mean ages, and only small differences in size at age when compared to comparable data for landed fish.
Resumo:
Red bream (Beryx decadactylus) is a commercially important deep-sea benthopelagic fish with a circumglobal distribution on insular and continental slopes and seamounts. In the United States, small numbers are caught incidentally in the wreckfish (Polyprion americanus) fishery which operates off the southeastern coast, but no biological information exists for the management of the U.S. red bream population. For this study, otoliths (n=163) and gonads (n=161) were collected from commercially caught red bream between 2003 and 2008 to determine life history parameters. Specimens ranged in size from 410 to 630 mm fork length and were all determined to be mature by histological examination of the gonads. Females in spawning condition were observed from June through September, and reproductively active males were found year-round. Sectioned otoliths were difficult to interpret, but maximum age estimates were much higher than the 15 years previously reported for this species from the eastern North Atlantic based on whole-otolith analysis. Estimated ages ranged from 8 to 69 years, and a minimum lifespan of 49 years was validated by using bomb radiocarbon dating. Natural mortality was estimated at 0.06/yr. This study shows that red bream are longer lived and more vulnerable to overfishing than previously assumed and should be managed carefully to prevent overexploitation.
Resumo:
Assessing the vulnerability of stocks to fishing practices in U.S. federal waters was recently highlighted by the National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration, as an important factor to consider when 1) identifying stocks that should be managed and protected under a fishery management plan; 2) grouping data-poor stocks into relevant management complexes; and 3) developing precautionary harvest control rules. To assist the regional fishery management councils in determining vulnerability, NMFS elected to use a modified version of a productivity and susceptibility analysis (PSA) because it can be based on qualitative data, has a history of use in other fisheries, and is recommended by several organizations as a reasonable approach for evaluating risk. A number of productivity and susceptibility attributes for a stock are used in a PSA and from these attributes, index scores and measures of uncertainty are computed and graphically displayed. To demonstrate the utility of the resulting vulnerability evaluation, we evaluated six U.S. fisheries targeting 162 stocks that exhibited varying degrees of productivity and susceptibility, and for which data quality varied. Overall, the PSA was capable of differentiating the vulnerability of stocks along the gradient of susceptibility and productivity indices, although fixed thresholds separating low-, moderate-, and highly vulnerable species were not observed. The PSA can be used as a flexible tool that can incorporate regional-specific information on fishery and management activity.
Resumo:
The Pacific sardine (Sardinops sagax) is distributed along the west coast of North America from Baja California to British Columbia. This article presents estimates of biomass, spawning biomass, and related biological parameters based on four trawl-ichthyoplankton surveys conducted during July 2003 –March 2005 off Oregon and Washington. The trawl-based biomass estimates, serving as relative abundance, were 198,600 t (coefficient of variation [CV] = 0.51) in July 2003, 20,100 t (0.8) in March 2004, 77,900 t (0.34) in July 2004, and 30,100 t (0.72) in March 2005 over an area close to 200,000 km2. The biomass estimates, high in July and low in March, are a strong indication of migration in and out of this area. Sardine spawn in July off the Pacific Northwest (PNW) coast and none of the sampled fish had spawned in March. The estimated spawning biomass for July 2003 and July 2004 was 39,184 t (0.57) and 84,120 t (0.93), respectively. The average active female sardine in the PNW spawned every 20–40 days compared to every 6–8 days off California. The spawning habitat was located in the southeastern area off the PNW coast, a shift from the northwest area off the PNW coast in the 1990s. Egg production in off the PNW for 2003–04 was lower than that off California and that in the 1990s. Because the biomass of Pacific sardine off the PNW appears to be supported heavily by migratory fish from California, the sustainability of the local PNW population relies on the stability of the population off California, and on local oceanographic conditions for local residence.
Resumo:
To determine if shoreface sand ridges provide unique habitats for fish on the inner continental shelf, two cross-shelf trawl surveys (23 km in length) were conducted in southern New Jersey (July and September 1991−95 with a beam trawl and July and September 1997−06 with an otter trawl) to assess whether species abundance, richness, and assemblages differed on and away from the ridge. The dominant species collected with both gears were from the families Paralichthyidae, Triglidae, Gobiidae, Serranidae, Engraulidae, Stromateidae, and Sciaenidae. Overall abundance (n=41,451 individuals) and species richness (n=61 species) were distributed bimodally across the nearshore to offshore transect, and the highest values were found on either side of the sand ridge regardless of gear type. Canonical correspondence analysis revealed three species assemblages: inshore (<5 meters depth), near-ridge (9−14 meters depth), and offshore (>14 meters depth), and variation in species composition between gear types. Environmental factors that corresponded with the assemblage changes included depth, temperature, distance from the top of the ridge, and habitat complexity. The most abundant near-ridge assemblages were distinct and included economically important species. Sand ridges of the inner continental shelf appear to be important habitat for a number of fish species and therefore may not be a suitable area for sand and gravel mining.