923 resultados para Ultrasonic propagation
Resumo:
The goal of this study is to provide a framework for future researchers to understand and use the FARSITE wildfire-forecasting model with data assimilation. Current wildfire models lack the ability to provide accurate prediction of fire front position faster than real-time. When FARSITE is coupled with a recursive ensemble filter, the data assimilation forecast method improves. The scope includes an explanation of the standalone FARSITE application, technical details on FARSITE integration with a parallel program coupler called OpenPALM, and a model demonstration of the FARSITE-Ensemble Kalman Filter software using the FireFlux I experiment by Craig Clements. The results show that the fire front forecast is improved with the proposed data-driven methodology than with the standalone FARSITE model.
Resumo:
Aim: To evaluate the influence of ultrasonic activation (US) with different irrigant regimens in smear layer removal. Methods: One hundred bovine incisors were instrumented and divided into ten groups (n=10) according to final irrigation protocols: distilled water (DW); DW+US; 17% EDTA; QMix; 10% citric acid; 37% phosphoric acid; 17% EDTA+US; QMix+US; 10% citric acid+US; 37% phosphoric acid+US. The samples were then submitted to scanning electron microscopy where a score system was used to evaluate the images and effectiveness of proposed treatments. The data were statistically analyzed by Kruskal-Wallis and Mann-Whitney U tests for intergroup comparisons as well as the Wilcoxon and Friedman tests for intragroup comparisons at 5% significance level. Results: In the cervical third, groups 17% EDTA, QMix, 10% citric acid, 17% EDTA+US, QMix+US and 10% citric acid+US were more effective in smear layer removal (p<0.05); in the middle third, groups 17% EDTA+US and QMix+US were more effective in smear layer removal (p<0.05); in the apical third, groups 17% EDTA,17% EDTA+US and QMix+US were more effective in smear layer removal (p<0.05). Conclusions: US can aid 17% EDTA and QMix in smear layer removal at the middle third and QMix at the apical third, contributing to the cleaning of root canal system.
Resumo:
Background: Sertoli cells play a pivotal role in creating microenvironments essential for spermatogonial stem cells (SSCs) self-renewal and commitment to differentiation. Maintenance of SSCs and or induction of in vitro spermiogenesis may provide a therapeutic strategy to treat male infertility. Objective: This study investigated the role of luekemia inhibitory factor (LIF) on the propagation of SSCs and both functions of Sertoli cells on the proliferation and differentiation of these cells. Materials and Methods: SSCs were sorted from the testes of adult male mice by magnetic activated cell sorting and thymus cell antigen 1 antibody. On the other hand, isolated Sertoli cells were enriched using lectin coated plates. SSCs were cultured on Sertoli cells for 7 days in the absence or presence of LIF. The effects of these conditions were evaluated by microscopy and expression of meiotic and post meiotic transcripts by reverse transcriptase polymerase chain reaction. Results: Our data showed that SSCs co-cultured with Sertoli cells in the presence of LIF formed colonies on top of the Sertoli cells. These colonies had alkaline phosphatesase activity and expressed SSCs specific genes. SSCs were enjoyed limited development after the mere removal of LIF, and exhibiting expression of meiotic and postmeiotic transcript and loss of SSCs specific gene expression (p< 0.05). Conclusion: Our findings represent co-culture of SSCs with Sertoli cells provides conditions that may allow efficient proliferation and differentiation of SSCs for male infertility treatment.
Resumo:
Non-Destructive Testing (NDT) of deep foundations has become an integral part of the industry’s standard manufacturing processes. It is not unusual for the evaluation of the integrity of the concrete to include the measurement of ultrasonic wave speeds. Numerous methods have been proposed that use the propagation speed of ultrasonic waves to check the integrity of concrete for drilled shaft foundations. All such methods evaluate the integrity of the concrete inside the cage and between the access tubes. The integrity of the concrete outside the cage remains to be considered to determine the location of the border between the concrete and the soil in order to obtain the diameter of the drilled shaft. It is also economic to devise a methodology to obtain the diameter of the drilled shaft using the Cross-Hole Sonic Logging system (CSL). Performing such a methodology using the CSL and following the CSL tests is performed and used to check the integrity of the inside concrete, thus allowing the determination of the drilled shaft diameter without having to set up another NDT device. This proposed new method is based on the installation of galvanized tubes outside the shaft across from each inside tube, and performing the CSL test between the inside and outside tubes. From the performed experimental work a model is developed to evaluate the relationship between the thickness of concrete and the ultrasonic wave properties using signal processing. The experimental results show that there is a direct correlation between concrete thicknesses outside the cage and maximum amplitude of the received signal obtained from frequency domain data. This study demonstrates how this new method to measuring the diameter of drilled shafts during construction using a NDT method overcomes the limitations of currently-used methods. In the other part of study, a new method is proposed to visualize and quantify the extent and location of the defects. It is based on a color change in the frequency amplitude of the signal recorded by the receiver probe in the location of defects and it is called Frequency Tomography Analysis (FTA). Time-domain data is transferred to frequency-domain data of the signals propagated between tubes using Fast Fourier Transform (FFT). Then, distribution of the FTA will be evaluated. This method is employed after CSL has determined the high probability of an anomaly in a given area and is applied to improve location accuracy and to further characterize the feature. The technique has a very good resolution and clarifies the exact depth location of any void or defect through the length of the drilled shaft for the voids inside the cage. The last part of study also evaluates the effect of voids inside and outside the reinforcement cage and corrosion in the longitudinal bars on the strength and axial load capacity of drilled shafts. The objective is to quantify the extent of loss in axial strength and stiffness of drilled shafts due to presence of different types of symmetric voids and corrosion throughout their lengths.
Resumo:
An important parameter in integrated optical device is the propagation loss of the waveguide. Its characterization gives the information of the fabrication quality as well as the information of other passive devices on the chip as it is the basic building block of the passive devices. Although, over the last three decades many methods have been developed, there is not a single standard present yet. This paper presents a comparative analysis of the methods existing from the past as well as methods developed very recently in order to provide a complete picture of the pros and cons of different types of methods and from this comparison the best method is suggested according to the authors opinion. To support the claim, apart from the analytical comparison, this paper also presents a comparison performed with the experimental results between the suggested best method which is recently proposed by Massachusetts Institute of Technology (MIT) researchers based on undercoupled all-pass microring structure and the popular cut-back method.
Resumo:
Aim: To compare soft-tissue dissolution by sodium hypochlorite, with an EDTA intermediate rinse, with or without activation with passive ultrasonic activation (PUI) or sonic activation using the Endoactivator (EA) or Eddy tips (ED). Methodology: The root canals of eighty-three human maxillary central incisors were chemo-mechanically prepared and the teeth split. A standardized longitudinal intracanal groove was created in one of the root halves. Eighty-three porcine palatal mucosa samples were collected, adapted to fit into the grooves and weighed. The re-assembled specimens were randomly divided into four experimental groups (n = 20), based on the final rinse: no activation; EA; PUI; ED, using 2.5% sodium hypochlorite, with an EDTA intermediate rinse. A control group (n = 3) was irrigated with distilled water without activation. The solutions were delivered using a syringe and needle 2 mm from working length. Total irrigation time was 150 s, including 60 s of activation in the specific groups. The study was carried out at 36 ± 2 °C. The porcine palatal mucosa samples were weighed after completion of the assays. Student paired t-test and anova were used to assess the intra- and intergroup weight changes. The multiple comparisons were evaluated using Bonferroni correction (α = 0.05). Results: Weight loss occurred in all experimental groups. Irrigant activation resulted in greater weight loss when compared to the nonactivated group [vs. EA (P = 0.001); vs. PUI (P < 0.001); vs. ED (P < 0.001)]. No significant differences were found amongst the different activation systems. Conclusions: Activation increased the tissue-dissolving activity of irrigants from artificial grooves in root canals of maxillary central incisors. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Resumo:
C’est en réponse aux plus récentes crises financières que plusieurs processus réglementaires – dont certains constituent les objets d’étude de cette thèse – ont été déployés pour concevoir et implanter diverses réformes « d’amélioration » au sein de la pratique professionnelle des auditeurs financiers. Tant la crise du début des années 2000 que celle de 2007-2008 auraient attiré de vives critiques à l’égard du travail des auditeurs et de leur contribution (prétendument défaillante) au sein du fonctionnement des marchés des capitaux. Considérant leur fonction de « chien de garde » qui est censée assurer, avant tout, la protection du public au sein de ces marchés, il semblait inévitable que leur travail soit, dans une certaine mesure, remis en doute à travers les processus de révision réglementaire mis en place. C’est ainsi que chacun des trois articles qui composent cette thèse offre une analyse de différents aspects – tels que la mise en place, le déroulement, la nature et la substance des discours et des résultats – liés à ces processus de révision réglementaire qui entourent la pratique professionnelle des auditeurs au lendemain des crises financières. En somme, en plus d’indiquer comment ces processus ne sont point à l’abri de controverses, les conclusions de cette thèse inciteront à ce qu’une attention sérieuse soit portée à leur égard afin de préserver le bienfondé de la profession des comptables et des auditeurs. Alors que, dans le premier article, il sera question d’illustrer l’infiltration (critiquable) d’un discours néolibéral au sein des débats qui entourent les processus de révision réglementaire dont il est question, dans le deuxième article, il sera question d’exposer, au sein de ces processus, un mécanisme de production de mythes prônant un certain statu quo. Par ailleurs, dans le dernier article, en plus de mettre en évidence le fait que les approches de gouvernance déployées à travers ces processus de révision réglementaire ne sont pas suffisamment englobantes, on pourra aussi prendre conscience de l’inféodation de l’expertise de l’audit face à son environnement (et plus précisément, face aux expertises de la normalisation comptable et de la financiarisation de l’économie). Sous un regard critique, et à travers des analyses qualitatives, chacun des articles de cette thèse permettra de remettre en question certaines facettes des processus réglementaires et institutionnels qui entourent le champ de la comptabilité et de l’audit.
Resumo:
Numerical techniques such as the Boundary Element Method, Finite Element Method and Finite Difference Time Domain have been used widely to investigate plane and curved wave-front scattering by rough surfaces. For certain shapes of roughness elements (cylinders, semi-cylinders and ellipsoids) there are semi-analytical alternatives. Here, we present a theory for multiple scattering by cylinders on a hard surface to investigate effects due to different roughness shape, the effects of vacancies and variation of roughness element size on the excess attenuation due to a periodically rough surfaces.
Resumo:
Non Destructive Testing (NDT) and Structural Health Monitoring (SHM) are becoming essential in many application contexts, e.g. civil, industrial, aerospace etc., to reduce structures maintenance costs and improve safety. Conventional inspection methods typically exploit bulky and expensive instruments and rely on highly demanding signal processing techniques. The pressing need to overcome these limitations is the common thread that guided the work presented in this Thesis. In the first part, a scalable, low-cost and multi-sensors smart sensor network is introduced. The capability of this technology to carry out accurate modal analysis on structures undergoing flexural vibrations has been validated by means of two experimental campaigns. Then, the suitability of low-cost piezoelectric disks in modal analysis has been demonstrated. To enable the use of this kind of sensing technology in such non conventional applications, ad hoc data merging algorithms have been developed. In the second part, instead, imaging algorithms for Lamb waves inspection (namely DMAS and DS-DMAS) have been implemented and validated. Results show that DMAS outperforms the canonical Delay and Sum (DAS) approach in terms of image resolution and contrast. Similarly, DS-DMAS can achieve better results than both DMAS and DAS by suppressing artefacts and noise. To exploit the full potential of these procedures, accurate group velocity estimations are required. Thus, novel wavefield analysis tools that can address the estimation of the dispersion curves from SLDV acquisitions have been investigated. An image segmentation technique (called DRLSE) was exploited in the k-space to draw out the wavenumber profile. The DRLSE method was compared with compressive sensing methods to extract the group and phase velocity information. The validation, performed on three different carbon fibre plates, showed that the proposed solutions can accurately determine the wavenumber and velocities in polar coordinates at multiple excitation frequencies.
Resumo:
In the last few years, mobile wireless technology has gone through a revolutionary change. Web-enabled devices have evolved into essential tools for communication, information, and entertainment. The fifth generation (5G) of mobile communication networks is envisioned to be a key enabler of the next upcoming wireless revolution. Millimeter wave (mmWave) spectrum and the evolution of Cloud Radio Access Networks (C-RANs) are two of the main technological innovations of 5G wireless systems and beyond. Because of the current spectrum-shortage condition, mmWaves have been proposed for the next generation systems, providing larger bandwidths and higher data rates. Consequently, new radio channel models are being developed. Recently, deterministic ray-based models such as Ray-Tracing (RT) are getting more attractive thanks to their frequency-agility and reliable predictions. A modern RT software has been calibrated and used to analyze the mmWave channel. Knowledge of the electromagnetic properties of materials is therefore essential. Hence, an item-level electromagnetic characterization of common construction materials has been successfully achieved to obtain information about their complex relative permittivity. A complete tuning of the RT tool has been performed against indoor and outdoor measurement campaigns at 27 and 38 GHz, setting the basis for the future development of advanced beamforming techniques which rely on deterministic propagation models (as RT). C-RAN is a novel mobile network architecture which can address a number of challenges that network operators are facing in order to meet the continuous customers’ demands. C-RANs have already been adopted in advanced 4G deployments; however, there are still some issues to deal with, especially considering the bandwidth requirements set by the forthcoming 5G systems. Open RAN specifications have been proposed to overcome the new 5G challenges set on C-RAN architectures, including synchronization aspects. In this work it is described an FPGA implementation of the Synchronization Plane for an O-RAN-compliant radio system.
Resumo:
Over the past years, ray tracing (RT) models popularity has been increasing. From the nineties, RT has been used for field prediction in environment such as indoor and urban environments. Nevertheless, with the advent of new technologies, the channel model has become decidedly more dynamic and to perform RT simulations at each discrete time instant become computationally expensive. In this thesis, a new dynamic ray tracing (DRT) approach is presented in which from a single ray tracing simulation at an initial time t0, through analytical formulas we are able to track the motion of the interaction points. The benefits that this approach bring are that Doppler frequencies and channel prediction can be derived at every time instant, without recurring to multiple RT runs and therefore shortening the computation time. DRT performance was studied on two case studies and the results shows the accuracy and the computational gain that derives from this approach. Another issue that has been addressed in this thesis is the licensed band exhaustion of some frequency bands. To deal with this problem, a novel unselfish spectrum leasing scheme in cognitive radio networks (CRNs) is proposed that offers an energy-efficient solution minimizing the environmental impact of the network. In addition, a network management architecture is introduced and resource allocation is proposed as a constrained sum energy efficiency maximization problem. System simulations demonstrate an increment in the energy efficiency of the primary users’ network compared with previously proposed algorithms.
Oceanic Near-inertial internal waves generation, propagation and interaction with mesoscale dynamics
Resumo:
Oceans play a key role in the climate system, being the largest heat sinks on Earth. Part of the energy balance of ocean circulation is driven by the Near-inertial internal waves (NIWs). Strong NIWs are observed during a multi-platform, multi-disciplinary and multi-scale campaign led by the NATO-STO CMRE in autumn 2017 in the Ligurian Sea (northwestern Mediterranean Sea). The objectives of this work are as follows: characterise the studied area at different scales; study the NIWs generation and their propagation; estimate the NIWs properties; study the interaction between NIWs and mesoscale structures. This work provides, to the author’s knowledge, the first characterization of NIWs in the Mediterranean Sea. The near-surface NIWs observed at the fixed moorings are locally generated by wind bursts while the deeper waves originate in other regions and arrive at the moorings several days later. Most of the observed NIWs energy propagates downward with a mean vertical group velocity of (2.2±0.3) ⋅10-4 m s-1. On average, the NIWs have an amplitude of 0.13 m s-1 and mean horizontal and vertical wavelengths of 43±25 km and 125±35 m, while shorter wavelengths are observed at the near-coastal mooring, 36±2 km and 33±2 m, respectively. Most of the observed NIWs are blue shifted and reach a value 9% higher than the local inertial frequency. Only two observed NIWs are characterised by a redshift (up to 3% lower than the local inertial frequency). In support of the in situ observations, a high resolution numerical model is implemented using NEMO (Madec et al., 2019). Results show that anticyclones (cyclones) shift the frequency of NIWs to lower (higher) frequencies with respect to the local inertial frequency. Anticyclones facilitate the downward propagation of NIW energy, while cyclones dampen it. Absence of NIWs energy within an anticyclone is also investigated.