922 resultados para UPPER-LIMB HYPERHIDROSIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A spectral performance model, designed to simulate the system spectral throughput for each of the 21 channels in the HIRDLS radiometer, is described. This model uses the measured spectral characteristics of each of the components in the optical train, appropriately corrected for their optical environment, to determine the end-to-end spectral throughput profile for each channel. This profile is then combined with the predicted thermal emission from the atmosphere, arising from the height of interest, to establish an in-band (wanted) to out-of-band (unwanted) radiance ratio. The results from the use of the model demonstrate that the instrument level radiometric requirements for the instrument will be achieved. The optical arrangement and spectral design requirements for filtering in the HIRDLS instrument are described together with a presentation of the performance achieved for the complete set of manufactured filters. Compliance of the predicted passband throughput model to the spectral positioning requi rements of the instrument is also demonstrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use microwave retrievals of upper tropospheric humidity (UTH) to estimate the impact of clear-sky-only sampling by infrared instruments on the distribution, variability and trends in UTH. Our method isolates the impact of the clear-sky-only sampling, without convolving errors from other sources. On daily time scales IR-sampled UTH contains large data gaps in convectively active areas, with only about 20-30 % of the tropics (30 S­ 30 N) being sampled. This results in a dry bias of about -9 %RH in the area-weighted tropical daily UTH time series. On monthly scales, maximum clear-sky bias (CSB) is up to -30 %RH over convectively active areas. The magnitude of CSB shows significant correlations with UTH itself (-0.5) and also with the variability in UTH (-0.6). We also show that IR-sampled UTH time series have higher interannual variability and smaller trends compared to microwave sampling. We argue that a significant part of the smaller trend results from the contrasting influence of diurnal drift in the satellite measurements on the wet and dry regions of the tropics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Global climate change results from a small yet persistent imbalance between the amount of sunlight absorbed by Earth and the thermal radiation emitted back to space. An apparent inconsistency has been diagnosed between interannual variations in the net radiation imbalance inferred from satellite measurements and upper-ocean heating rate from in situ measurements, and this inconsistency has been interpreted as ‘missing energy’ in the system. Here we present a revised analysis of net radiation at the top of the atmosphere from satellite data, and we estimate ocean heat content, based on three independent sources. We find that the difference between the heat balance at the top of the atmosphere and upper-ocean heat content change is not statistically significant when accounting for observational uncertainties in ocean measurements, given transitions in instrumentation and sampling. Furthermore, variability in Earth’s energy imbalance relating to El Niño-Southern Oscillation is found to be consistent within observational uncertainties among the satellite measurements, a reanalysis model simulation and one of the ocean heat content records. We combine satellite data with ocean measurements to depths of 1,800 m, and show that between January 2001 and December 2010, Earth has been steadily accumulating energy at a rate of 0.50±0.43 Wm−2 (uncertainties at the 90% confidence level). We conclude that energy storage is continuing to increase in the sub-surface ocean.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an analysis of the oceanic heat advection and its variability in the upper 500 m in the southeastern tropical Pacific (100W–75W, 25S–10S) as simulated by the global coupled model HiGEM, which has one of the highest resolutions currently used in long-term integrations. The simulated climatology represents a temperature advection field arising from transient small-scale (<450 km) features, with structures and transport that appear consistent with estimates based on available observational data for the mooring at 20S, 85W. The transient structures are very persistent (>4 months), and in specific locations they generate an important contribution to the local upper-ocean heat budget, characterised by scales of a few hundred kilometres, and periods of over a year. The contribution from such structures to the local, long-term oceanic heat budget however can be of either sign, or vanishing, depending on the location; and, although there appears some organisation in preferential areas of activity, the average over the entire region is small. While several different mechanisms may be responsible for the temperature advection by transients, we find that a significant, and possibly dominant, component is associated with vortices embedded in the large-scale, climatological salinity gradient associated with the fresh intrusion of mid-latitude intermediate water which penetrates north-westward beneath the tropical thermocline

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A multimodel assessment of the performance of chemistry-climate models (CCMs) in the extratropical upper troposphere/lower stratosphere (UTLS) is conducted for the first time. Process-oriented diagnostics are used to validate dynamical and transport characteristics of 18 CCMs using meteorological analyses and aircraft and satellite observations. The main dynamical and chemical climatological characteristics of the extratropical UTLS are generally well represented by the models, despite the limited horizontal and vertical resolution. The seasonal cycle of lowermost stratospheric mass is realistic, however with a wide spread in its mean value. A tropopause inversion layer is present in most models, although the maximum in static stability is located too high above the tropopause and is somewhat too weak, as expected from limited model resolution. Similar comments apply to the extratropical tropopause transition layer. The seasonality in lower stratospheric chemical tracers is consistent with the seasonality in the Brewer-Dobson circulation. Both vertical and meridional tracer gradients are of similar strength to those found in observations. Models that perform less well tend to use a semi-Lagrangian transport scheme and/or have a very low resolution. Two models, and the multimodel mean, score consistently well on all diagnostics, while seven other models score well on all diagnostics except the seasonal cycle of water vapor. Only four of the models are consistently below average. The lack of tropospheric chemistry in most models limits their evaluation in the upper troposphere. Finally, the UTLS is relatively sparsely sampled by observations, limiting our ability to quantitatively evaluate many aspects of model performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CO, O3, and H2O data in the upper troposphere/lower stratosphere (UTLS) measured by the Atmospheric Chemistry Experiment Fourier Transform Spectrometer(ACE-FTS) on Canada’s SCISAT-1 satellite are validated using aircraft and ozonesonde measurements. In the UTLS, validation of chemical trace gas measurements is a challenging task due to small-scale variability in the tracer fields, strong gradients of the tracers across the tropopause, and scarcity of measurements suitable for validation purposes. Validation based on coincidences therefore suffers from geophysical noise. Two alternative methods for the validation of satellite data are introduced, which avoid the usual need for coincident measurements: tracer-tracer correlations, and vertical tracer profiles relative to tropopause height. Both are increasingly being used for model validation as they strongly suppress geophysical variability and thereby provide an “instantaneous climatology”. This allows comparison of measurements between non-coincident data sets which yields information about the precision and a statistically meaningful error-assessment of the ACE-FTS satellite data in the UTLS. By defining a trade-off factor, we show that the measurement errors can be reduced by including more measurements obtained over a wider longitude range into the comparison, despite the increased geophysical variability. Applying the methods then yields the following upper bounds to the relative differences in the mean found between the ACE-FTS and SPURT aircraft measurements in the upper troposphere (UT) and lower stratosphere (LS), respectively: for CO ±9% and ±12%, for H2O ±30% and ±18%, and for O3 ±25% and ±19%. The relative differences for O3 can be narrowed down by using a larger dataset obtained from ozonesondes, yielding a high bias in the ACEFTS measurements of 18% in the UT and relative differences of ±8% for measurements in the LS. When taking into account the smearing effect of the vertically limited spacing between measurements of the ACE-FTS instrument, the relative differences decrease by 5–15% around the tropopause, suggesting a vertical resolution of the ACE-FTS in the UTLS of around 1 km. The ACE-FTS hence offers unprecedented precision and vertical resolution for a satellite instrument, which will allow a new global perspective on UTLS tracer distributions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climate models predict a large range of possible future temperatures for a particular scenario of future emissions of greenhouse gases and other anthropogenic forcings of climate. Given that further warming in coming decades could threaten increasing risks of climatic disruption, it is important to determine whether model projections are consistent with temperature changes already observed. This can be achieved by quantifying the extent to which increases in well mixed greenhouse gases and changes in other anthropogenic and natural forcings have already altered temperature patterns around the globe. Here, for the first time, we combine multiple climate models into a single synthesized estimate of future warming rates consistent with past temperature changes. We show that the observed evolution of near-surface temperatures appears to indicate lower ranges (5–95%) for warming (0.35–0.82 K and 0.45–0.93 K by the 2020s (2020–9) relative to 1986–2005 under the RCP4.5 and 8.5 scenarios respectively) than the equivalent ranges projected by the CMIP5 climate models (0.48–1.00 K and 0.51–1.16 K respectively). Our results indicate that for each RCP the upper end of the range of CMIP5 climate model projections is inconsistent with past warming.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of 18 coupled Chemistry Climate Models (CCMs) in the Tropical Tropopause Layer (TTL) is evaluated using qualitative and quantitative diagnostics. Trends in tropopause quantities in the tropics and the extratropical Upper Troposphere and Lower Stratosphere (UTLS) are analyzed. A quantitative grading methodology for evaluating CCMs is extended to include variability and used to develop four different grades for tropical tropopause temperature and pressure, water vapor and ozone. Four of the 18 models and the multi-model mean meet quantitative and qualitative standards for reproducing key processes in the TTL. Several diagnostics are performed on a subset of the models analyzing the Tropopause Inversion Layer (TIL), Lagrangian cold point and TTL transit time. Historical decreases in tropical tropopause pressure and decreases in water vapor are simulated, lending confidence to future projections. The models simulate continued decreases in tropopause pressure in the 21st century, along with ∼1K increases per century in cold point tropopause temperature and 0.5–1 ppmv per century increases in water vapor above the tropical tropopause. TTL water vapor increases below the cold point. In two models, these trends are associated with 35% increases in TTL cloud fraction. These changes indicate significant perturbations to TTL processes, specifically to deep convective heating and humidity transport. Ozone in the extratropical lowermost stratosphere has significant and hemispheric asymmetric trends. O3 is projected to increase by nearly 30% due to ozone recovery in the Southern Hemisphere (SH) and due to enhancements in the stratospheric circulation. These UTLS ozone trends may have significant effects in the TTL and the troposphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The extratropical upper troposphere and lower stratosphere (Ex-UTLS) is a transition region between the stratosphere and the troposphere. The Ex-UTLS includes the tropopause, a strong static stability gradient and dynamic barrier to transport. The barrier is reflected in tracer profiles. This region exhibits complex dynamical, radiative, and chemical characteristics that place stringent spatial and temporal requirements on observing and modeling systems. The Ex-UTLS couples the stratosphere to the troposphere through chemical constituent transport (of, e.g., ozone), by dynamically linking the stratospheric circulation with tropospheric wave patterns, and via radiative processes tied to optically thick clouds and clear-sky gradients of radiatively active gases. A comprehensive picture of the Ex-UTLS is presented that brings together different definitions of the tropopause, focusing on observed dynamical and chemical structure and their coupling. This integral view recognizes that thermal gradients and dynamic barriers are necessarily linked, that these barriers inhibit mixing and give rise to specific trace gas distributions, and that there are radiative feedbacks that help maintain this structure. The impacts of 21st century anthropogenic changes to the atmosphere due to ozone recovery and climate change will be felt in the Ex-UTLS, and recent simulations of these effects are summarized and placed in context.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analysis of observed ozone profiles in Northern Hemisphere low and middle latitudes reveals the seasonal persistence of ozone anomalies in both the lower and upper stratosphere. Principal component analysis is used to detect that above 16 hPa the persistence is strongest in the latitude band 15–45°N, while below 16 hPa the strongest persistence is found over 45–60°N. In both cases, ozone anomalies persist through the entire year from November to October. The persistence of ozone anomalies in the lower stratosphere is presumably related to the wintertime ozone buildup with subsequent photochemical relaxation through summer, as previously found for total ozone. The persistence in the upper stratosphere is more surprising, given the short lifetime of Ox at these altitudes. It is hypothesized that this “seasonal memory” in the upper stratospheric ozone anomalies arises from the seasonal persistence of transport-induced wintertime NOy anomalies, which then perturb the ozone chemistry throughout the rest of the year. This hypothesis is confirmed by analysis of observations of NO2, NOx, and various long-lived trace gases in the upper stratosphere, which are found to exhibit the same seasonal persistence. Previous studies have attributed much of the year-to-year variability in wintertime extratropical upper stratospheric ozone to the Quasi-Biennial Oscillation (QBO) through transport-induced NOy (and hence NO2) anomalies but have not identified any statistical connection between the QBO and summertime ozone variability. Our results imply that through this “seasonal memory,” the QBO has an asynchronous effect on ozone in the low to midlatitude upper stratosphere during summer and early autumn.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study a gridded hourly 1-km precipitation dataset for a meso-scale catchment (4,062 km2) of the Upper Severn River, UK was constructed using rainfall radar data to disaggregate a daily precipitation (rain gauge) dataset. The dataset was compared to an hourly precipitation dataset created entirely from rainfall radar data. Results found that when assessed against gauge readings and as input to the Lisflood-RR hydrological model, the rain gauge/radar disaggregated dataset performed the best suggesting that this simple method of combining rainfall radar data with rain gauge readings can provide temporally detailed precipitation datasets for calibrating hydrological models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During SPURT (Spurenstofftransport in der Tropopausenregion, trace gas transport in the tropopause region) we performed measurements of a wide range of trace gases with different lifetimes and sink/source characteristics in the northern hemispheric upper troposphere (UT) and lowermost stratosphere (LMS). A large number of in-situ instruments were deployed on board a Learjet 35A, flying at altitudes up to 13.7 km, at times reaching to nearly 380 K potential temperature. Eight measurement campaigns (consisting of a total of 36 flights), distributed over all seasons and typically covering latitudes between 35° N and 75° N in the European longitude sector (10° W–20° E), were performed. Here we present an overview of the project, describing the instrumentation, the encountered meteorological situations during the campaigns and the data set available from SPURT. Measurements were obtained for N2O, CH4, CO, CO2, CFC12, H2, SF6, NO, NOy, O3 and H2O. We illustrate the strength of this new data set by showing mean distributions of the mixing ratios of selected trace gases, using a potential temperature-equivalent latitude coordinate system. The observations reveal that the LMS is most stratospheric in character during spring, with the highest mixing ratios of O3 and NOy and the lowest mixing ratios of N2O and SF6. The lowest mixing ratios of NOy and O3 are observed during autumn, together with the highest mixing ratios of N2O and SF6 indicating a strong tropospheric influence. For H2O, however, the maximum concentrations in the LMS are found during summer, suggesting unique (temperature- and convection-controlled) conditions for this molecule during transport across the tropopause. The SPURT data set is presently the most accurate and complete data set for many trace species in the LMS, and its main value is the simultaneous measurement of a suite of trace gases having different lifetimes and physical-chemical histories. It is thus very well suited for studies of atmospheric transport, for model validation, and for investigations of seasonal changes in the UT/LMS, as demonstrated in accompanying and elsewhere published studies.